Matemática, perguntado por cristiandenervovnyv1, 10 meses atrás

A UEG realiza seu Processo Seletivo em dois dias. As oito disciplinas, Língua Portuguesa- Literatura Brasileira, Língua Estrangeira Moderna, Biologia, Matemática, História, Geografia, Química e Física, são distribuídas em duas provas objetivas, com quatro disciplinas por dia.
No Processo Seletivo 2005/2, a distribuição é a seguinte:
- primeiro dia: Língua Portuguesa-Literatura Brasileira, Língua Estrangeira Moderna, Biologia e Matemática;
- segundo dia: História, Geografia, Química e Física.
A UEG poderia distribuir as disciplinas para as duas provas objetivas, com quatro por dia, de
a) 1.680 modos diferentes.
b) 256 modos diferentes.
c) 128 modos diferentes.
d) 70 modos diferentes.

Soluções para a tarefa

Respondido por mariarita012souza
4

Resposta:

D) 70 modos diferentes

Explicação passo-a-passo:

A UEG poderia distribuir as disciplinas para as duas provas objetivas, com quatro por dia, de 70 maneiras.

Vamos determinar a quantidade de maneiras que podemos distribuir 4 disciplinas no primeiro dia.

Observe que se a escolha para o primeiro for feita na ordem Matemática, História, Física e Química, teremos a mesma escolha se for na ordem Matemática, Física, Química e História.

Isso quer dizer que a ordem da escolha não é importante.

Dito isso, vamos utilizar a fórmula da Combinação:

C(n,k)=\frac{n!}{k!(n-k)!}C(n,k)=

k!(n−k)!

n!

.

Precisamos escolher 4 disciplinas entre as 8 disponíveis. Portanto:

C(8,4)=\frac{8!}{4!4!}C(8,4)=

4!4!

8!

C(8,4) = 70.

Ou seja, existem 70 maneiras.

Escolhidas as quatro disciplinas do primeiro dia, restam 4 para o segundo dia. Sendo assim, existe 1 maneira apenas para o segundo dia.

Portanto, existem 70.1 = 70 maneiras de distribuir as oito disciplinas nos dois dias.

Perguntas interessantes