Física, perguntado por osamu95, 10 meses atrás

A turbina de um avião a jato gera uma potência sonora 125600w. Qual será nível de intensidade sonora percebida por uma pessoa, ha 100m do avião?


osamu95: 125600000 errei

Soluções para a tarefa

Respondido por TonakoFaria20
1

Olá, tudo bem?

Resolução:

Intensidade sonora

  • Para resolver o problema precisa primeiro descobrir o valor da intensidade do som próximo ao avião.
  • A intensidade sonora (I) é definida fisicamente como a potência sonora por unidade de área de uma superfície.

                                 \boxed{I=\dfrac{P}{A}}

Onde:

I=intensidade sonora ⇒ [W/m²]

P=Potência ⇒ [W]

A=área ⇒ [m²]

Dados:

P=12.560.000 W

d=R=100 m

π=3,14

I=?

A intensidade sonora:

                               I=\dfrac{P}{A}\\\\I=\dfrac{P}{4\pi R^2}

Substituindo os dados:

                                  I=\dfrac{12.560.000}{(4)*(3,14)*(100)^2}\\\\\\I=\dfrac{12.560.000}{125.600}\\\\\\\boxed{I=100W/m^{2}}

_________________________________________________

Nível sonoro

  • O nível de intensidade sonora (β) diminui ou aumenta logaritmomante conforme a distância da fonte.

                                \boxed{\beta=Log \bigg(\frac{I}{I_0}\bigg)}

Onde:

β=nível de intensidade sonora ⇒ [dB]

Io=intensidade sonora no limiar da audição (referencia) ⇒ [W/m²]

I=intensidade sonora nas proximidades da fonte ⇒ [W/m²]

Dados:

Io=10⁻¹²W/m²

I=100=10²W/m²

β=?

O nível de intensidade sonoro percebido pela pessoa:

                            \beta=10.Log\bigg(\dfrac{I}{I_0}\bigg)\\\\\\\beta=10Log\bigg(\dfrac{10^2}{10-^{12}}\bigg)\\\\\\\beta=10Log 10^{-12-(-2)}\\\\\ \beta=10log10^{14}\\\\\ \beta= 10*14\\\\\\\boxed{\beta=140dB }  

Bons estudos!!! {{{(>_<)}}}

Perguntas interessantes