Matemática, perguntado por unii93, 1 ano atrás

A)
x + y = 10 \\  x - y = 5
B)
 \frac{x}{6}  =  \frac{y}{4 }  \\ 5x - 3y = 36
C)
4x - 4y = 5 \\ 3x - 3y = 7

Soluções para a tarefa

Respondido por profmbacelar
1

Resposta:

ver na explicação

Explicação passo-a-passo:

\left \{ {{x+y=10} \atop {x-y=5}} \right. \\2x=15\\x=\frac{15}{2}\\como \,\,\\x-y=5\\\frac{15}{2}-y=5\\15-2y=10\\15-10=2y\\5=2y\\y=\frac{5}{2}

\left \{ {{\frac{x}{6}=\frac{y}{4}} \atop {5x-3y=36}} \right. \\como\\x=\frac{6y}{4}=\frac{3y}{2}\\substituindo\,x\,na\,\,2\ª\\5*\frac{3y}{2}-3y=36\\\frac{15y}{2}-3y=36\\15y-6y=36*2\\9^{:9}y=36^{:9}*2\\ y=4*2\\y=8

\left \{ {{4x-4y=5} \atop {3x-3y=7}} \right. \\como\\4x=5+4y\\x=\frac{5+4y}{4}\\substiuindo\,\x\,\,na\,\,2\ª\\3*\frac{(5+4y)}{4}-3y=7\\\frac{(15+12y)}{4}-3y=7\\\frac{(15+12y-12y)}{4}=7\\15+12y-12y=7\\15\neq=7 (SI)

Perguntas interessantes