Matemática, perguntado por givaldo98037089, 8 meses atrás

) A taxa efetiva anual é de 80% . qual é equivalente taxa mensal?

Soluções para a tarefa

Respondido por crquadros
0

Resposta:

A taxa mensal equivalente é de 5,020168017%.

Explicação passo-a-passo:

Para resolver vamos utilizar a fórmula de taxa equivalente:

T_{Quero}= \left(\left\{\left(1+\dfrac{T_{Tenho}}{100}\right)^{\left[\dfrac{Prazo_{\ quero}}{Prazo_{\ tenho}}\right]}\right\}-1\right)\times100\\\\\\T_{Mensal}= \left(\left\{\left(1+\dfrac{T_{Anual}}{100}\right)^{\left[\dfrac{Prazo_{\ m\^{e}s}}{Prazo_{\ ano}}\right]}\right\}-1\right)\times100\\\\\\T_{Mensal}= \left(\left\{\left(1+\dfrac{80}{100}\right)^{\left[\dfrac{1}{12}\right]}\right\}-1\right)\times100\\\\\\T_{Mensal}= \left(\left\{(1+0,80)^{\left[\dfrac{1}{12}\right]}\right\}-1\right)\times100

T_{Mensal}= \left(\left\{(1,80)^{\left[\dfrac{1}{12}\right]}\right\}-1\right)\times100\\\\\\T_{Mensal}= (1,05020168017-1)\times100\\\\T_{Mensal}= 0,05020168017\times100\\\\\boxed{\bf{T_{Mensal}= 5,020168017\%}}

{\begin{center}\fbox{\rule{2ex}{2ex}\hspace{20ex}{#ESPERO TER AJUDADO !}\hspace{20ex}\rule{2ex}{2ex}}}{\end{center}}

Perguntas interessantes