a soma dos quadrados de dois números inteiros positivos e consecutivos e 25 Calcule os
Soluções para a tarefa
Respondido por
182
os números consecutivos são
x e x + 1
x² + ( x + 1)² = 25
x² + ( x² + 2.1.x + 1¹ ) = 25
x² + x² + 2x + 1 - 25 = 0
2x² + 2x - 24 = 0
x² + x - 12 = 0
delta = 1 + 48 = 49 ou +-V49 = +-7 ***
x = ( -1 +-7)/2
x1 =6/2 = 3****
x2 = -8/2 = -4 ***
x e x + 1
x² + ( x + 1)² = 25
x² + ( x² + 2.1.x + 1¹ ) = 25
x² + x² + 2x + 1 - 25 = 0
2x² + 2x - 24 = 0
x² + x - 12 = 0
delta = 1 + 48 = 49 ou +-V49 = +-7 ***
x = ( -1 +-7)/2
x1 =6/2 = 3****
x2 = -8/2 = -4 ***
curiosaa2:
"***"?
Respondido por
25
Os dois números são 3 e 4.
Vamos considerar o número x. O número consecutivo é igual a x + 1.
O quadrado do número x é x² e o do número x + 1 é (x + 1)².
Como a soma entre os números x² e (x + 1)² é igual a 25, então temos a seguinte equação:
x² + (x + 1)² = 25.
O quadrado da soma é definido por:
- (a + b)² = a² + 2ab + b².
Logo:
x² + x² + 2x + 1 = 25
2x² + 2x - 24 = 0
x² + x - 12 = 0.
Temos aqui uma equação do segundo grau. Para resolvê-la, vamos utilizar a fórmula de Bhaskara:
Δ = 1² - 4.1.(-12)
Δ = 1 + 48
Δ = 49
.
O enunciado diz que os dois números são positivos. Então, devemos descartar o número -4. Sendo assim, o valor de x é igual a 3.
Portanto, os dois números inteiros positivos são 3 e 3 + 1 = 4.
Exercício de equação do segundo grau: https://brainly.com.br/tarefa/8151127
Anexos:
Perguntas interessantes
Matemática,
8 meses atrás
Ed. Física,
8 meses atrás
Matemática,
8 meses atrás
Português,
1 ano atrás
Biologia,
1 ano atrás