A soma dos n primeiros termos de uma sequência {aₙ} é dada por
Sₙ = cos(2ⁿ) − cos(1), n ∈ ℕ*.
A lei de formação para a sequência {aₙ} é
A) aₙ = 2 sen(3 ∙ 2ⁿ⁻²) sen(2ⁿ⁻²)
B) aₙ = 2 cos(3 ∙ 2ⁿ⁻²) sen(2ⁿ⁻²)
C) aₙ = − 2 sen(3 ∙ 2ⁿ⁻²) sen(2ⁿ⁻²)
D) aₙ = 2 sen(3 ∙ 2ⁿ⁻²) cos(2ⁿ⁻²)
E) aₙ = − 2 cos(3 ∙ 2ⁿ⁻²) sen(2ⁿ⁻²)
Soluções para a tarefa
Respondido por
1
Olá Lukyo.
Identidade usada:
![\star~~\boxed{\boxed{\mathsf{cos(\alpha\pm\beta)=cos(\alpha)\cdot cos(\beta) \mp sen(\alpha)\cdot sen(\beta)}}} \star~~\boxed{\boxed{\mathsf{cos(\alpha\pm\beta)=cos(\alpha)\cdot cos(\beta) \mp sen(\alpha)\cdot sen(\beta)}}}](https://tex.z-dn.net/?f=%5Cstar%7E%7E%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7Bcos%28%5Calpha%5Cpm%5Cbeta%29%3Dcos%28%5Calpha%29%5Ccdot+cos%28%5Cbeta%29+%5Cmp+sen%28%5Calpha%29%5Ccdot+sen%28%5Cbeta%29%7D%7D%7D)
______________________________
Temos que:
![\mathsf{S_n=cos(2^n)-cos(1)~~n\geq1} \mathsf{S_n=cos(2^n)-cos(1)~~n\geq1}](https://tex.z-dn.net/?f=%5Cmathsf%7BS_n%3Dcos%282%5En%29-cos%281%29%7E%7En%5Cgeq1%7D)
pode ser escrito como a soma dos n - 1 primeiros termos mais o último termo,
ou seja.
![\mathsf{S_{n}= S_{n - 1} + a_n} \mathsf{S_{n}= S_{n - 1} + a_n}](https://tex.z-dn.net/?f=%5Cmathsf%7BS_%7Bn%7D%3D+S_%7Bn+-+1%7D+%2B+a_n%7D)
Note que:
![\mathsf{S_{n-1}=cos(2^{n-1})-cos(1)} \mathsf{S_{n-1}=cos(2^{n-1})-cos(1)}](https://tex.z-dn.net/?f=%5Cmathsf%7BS_%7Bn-1%7D%3Dcos%282%5E%7Bn-1%7D%29-cos%281%29%7D)
Substituindo
![\mathsf{a_n=S_n - S_{n-1}=cos(2^n)-cos(1)-cos(2^{n-1})+cos(1)=cos(2^n)-cos(2^{n-1})}\\\\\\\mathsf{a_n=cos(2^n)-cos(2^{n-1})} \mathsf{a_n=S_n - S_{n-1}=cos(2^n)-cos(1)-cos(2^{n-1})+cos(1)=cos(2^n)-cos(2^{n-1})}\\\\\\\mathsf{a_n=cos(2^n)-cos(2^{n-1})}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_n%3DS_n+-+S_%7Bn-1%7D%3Dcos%282%5En%29-cos%281%29-cos%282%5E%7Bn-1%7D%29%2Bcos%281%29%3Dcos%282%5En%29-cos%282%5E%7Bn-1%7D%29%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Ba_n%3Dcos%282%5En%29-cos%282%5E%7Bn-1%7D%29%7D)
A ideia agora é deixar
com a cara de uma das alternativas. Como todas são produtos, vamos transformar nosso
em um produto também.
Pela identidade do ínicio, temos que:
![\mathsf{cos(\alpha-\beta)=cos(\alpha)\cdot cos(\beta)+sen(\alpha)\cdot sen(\beta)}\\\\\\\mathsf{cos(\alpha+\beta)=cos(\alpha)\cdot cos(\beta)-sen(\alpha)\cdot sen(\beta)} \mathsf{cos(\alpha-\beta)=cos(\alpha)\cdot cos(\beta)+sen(\alpha)\cdot sen(\beta)}\\\\\\\mathsf{cos(\alpha+\beta)=cos(\alpha)\cdot cos(\beta)-sen(\alpha)\cdot sen(\beta)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%28%5Calpha-%5Cbeta%29%3Dcos%28%5Calpha%29%5Ccdot+cos%28%5Cbeta%29%2Bsen%28%5Calpha%29%5Ccdot+sen%28%5Cbeta%29%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bcos%28%5Calpha%2B%5Cbeta%29%3Dcos%28%5Calpha%29%5Ccdot+cos%28%5Cbeta%29-sen%28%5Calpha%29%5Ccdot+sen%28%5Cbeta%29%7D)
Fazendo a diferença da segunda equação pela primeira.
![\mathsf{cos(\alpha+\beta)-cos(\alpha-\beta)=-2sen(\alpha)\cdot sen(\beta)} \mathsf{cos(\alpha+\beta)-cos(\alpha-\beta)=-2sen(\alpha)\cdot sen(\beta)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%28%5Calpha%2B%5Cbeta%29-cos%28%5Calpha-%5Cbeta%29%3D-2sen%28%5Calpha%29%5Ccdot+sen%28%5Cbeta%29%7D)
Fazendo
e
, temos:
![\begin{cases}\mathsf{\alpha+\beta=2^n}\\\\\mathsf{\alpha-\beta=2^{n-1}}\end{cases} \begin{cases}\mathsf{\alpha+\beta=2^n}\\\\\mathsf{\alpha-\beta=2^{n-1}}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cmathsf%7B%5Calpha%2B%5Cbeta%3D2%5En%7D%5C%5C%5C%5C%5Cmathsf%7B%5Calpha-%5Cbeta%3D2%5E%7Bn-1%7D%7D%5Cend%7Bcases%7D)
![\mathsf{2\alpha=2^n+2^{n-1}}\\\\\mathsf{\alpha=2^{n-1}+2^{n-2}=2\cdot2^{n-2}+2^{n-2}=3\cdot2^{n-2}}}} \mathsf{2\alpha=2^n+2^{n-1}}\\\\\mathsf{\alpha=2^{n-1}+2^{n-2}=2\cdot2^{n-2}+2^{n-2}=3\cdot2^{n-2}}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B2%5Calpha%3D2%5En%2B2%5E%7Bn-1%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5Calpha%3D2%5E%7Bn-1%7D%2B2%5E%7Bn-2%7D%3D2%5Ccdot2%5E%7Bn-2%7D%2B2%5E%7Bn-2%7D%3D3%5Ccdot2%5E%7Bn-2%7D%7D%7D%7D)
Achando![\mathsf{\beta} \mathsf{\beta}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cbeta%7D)
![\mathsf{\alpha+\beta=2^{n}}\\\\\mathsf{\beta=2^2\cdot2^{n-2}-3\cdot2^{n-2}=2^{n-2}}} \mathsf{\alpha+\beta=2^{n}}\\\\\mathsf{\beta=2^2\cdot2^{n-2}-3\cdot2^{n-2}=2^{n-2}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Calpha%2B%5Cbeta%3D2%5E%7Bn%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5Cbeta%3D2%5E2%5Ccdot2%5E%7Bn-2%7D-3%5Ccdot2%5E%7Bn-2%7D%3D2%5E%7Bn-2%7D%7D%7D)
Portanto temos:
![\mathsf{a_n=cos(2^n)-cos(2^{n-1})=-2sen(3\cdot2^{n-2})\cdot sen(2^{n-2})}} \mathsf{a_n=cos(2^n)-cos(2^{n-1})=-2sen(3\cdot2^{n-2})\cdot sen(2^{n-2})}}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_n%3Dcos%282%5En%29-cos%282%5E%7Bn-1%7D%29%3D-2sen%283%5Ccdot2%5E%7Bn-2%7D%29%5Ccdot+sen%282%5E%7Bn-2%7D%29%7D%7D)
![\mathsf{a_n=-2sen(3\cdot2^{n-2})\cdot sen(2^{n-2})}} \mathsf{a_n=-2sen(3\cdot2^{n-2})\cdot sen(2^{n-2})}}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_n%3D-2sen%283%5Ccdot2%5E%7Bn-2%7D%29%5Ccdot+sen%282%5E%7Bn-2%7D%29%7D%7D)
Alternativa C
Dúvidas? Comente.
Identidade usada:
______________________________
Temos que:
ou seja.
Note que:
Substituindo
A ideia agora é deixar
Pela identidade do ínicio, temos que:
Fazendo a diferença da segunda equação pela primeira.
Fazendo
Achando
Portanto temos:
Alternativa C
Dúvidas? Comente.
Perguntas interessantes
Ed. Física,
11 meses atrás
História,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás