A soma dos 6 primeiros termos da PG (x+1,x,x+2) é?
Soluções para a tarefa
Resposta:Segue as contas abaixo na explicação
Explicação passo-a-passo:
(x+1,x,x+2) (x+1,x,x+2)
a3/a2=a2/a1 (-2/3+1,-2/3,-2/3+2)
(x+2)/x=x/(x+1) (-2/3+3/3,-2/3,-2/3+6/3)
(x+2).(x+1)=x.x (1/3,-2/3,4/3)
x²+x+2x+2=x²
x²+3x+2=x²
x²+3x+2-x²=0
3x+2=0
3x=-2
x=-2/3
a1=-2/3,q=a2/a1-->q=-2/3/1/3-->q=-6/3-->q=-2,n=6,a6=?,S6=?
an=a1.q^n-1 Sn=an.q-a1/q-1
a6=(-2/3).(-2)^6-1 S6=64/3.(-2)-(-2/3)/-2-1
a6=(-2/3).(-2)^5 S6=-128/3+2/3/-3
a6=(-2/3).(-32) S6=-126/3/-3
a6=64/3 S6=-126/-9
S6=14
ou
Sn=a1.[(q^n)-1]/q-1
S6=(-2/3).[(-2^6)-1]/-2-1
S6=(-2/3).[64-1]/-3
S6=(-2/3).63/-3
S6=-126/3/-3
S6=-126/-9
S6=14