Matemática, perguntado por gabrielerochas94, 5 meses atrás

A soma dos 20 primeiros termos da P.A (-10,-6,-2…)é?

Soluções para a tarefa

Respondido por ewerton197775p7gwlb
2

 >  \: resolucao \\  \\  \geqslant  \: progressao \:  \: aritmetica \\  \\ r = a2 - a1 \\ r =  - 6 - ( - 10) \\ r =  - 6 + 10 \\ r = 4 \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  >  \: o \: 20 \: termo \: da \: pa \\  \\ an = a1 + (n - 1)r \\ an =  - 10 + (20 - 1)4 \\ an =  - 10 + 19 \times 4 \\ an =  - 10 + 76 \\ an = 66 \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  >  \: a \: soma \: dos \: termos \: da \: pa \\  \\ sn =  \frac{(a1 + an)n}{2}  \\  \\ sn =  \frac{( - 10 + 66)20}{2}  \\  \\ sn =  \frac{56 \times 20}{2}  \\  \\ sn = 56 \times 10 \\  \\ sn = 560 \\  \\  \\  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \geqslant

Anexos:
Respondido por Math739
2

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

 \mathsf{ a_n=a_1+(n-1)\cdot r}

 \mathsf{a_{20}=-10+(20-1)\cdot4 }

 \mathsf{ a_{20}=-10+19\cdot4}

 \mathsf{a_{20}=-10+76 }

 \mathsf{a_{20}=66 }

 \mathsf{S_n=\dfrac{(a_1+a_n)\cdot n}{2} }

 \mathsf{S_{20}=\dfrac{(-10+66)\cdot20}{2} }

 \mathsf{S_{20}=\dfrac{56\cdot20}{2} }

 \mathsf{S_{20}=28\cdot20 }

\boxed{\boxed{ \mathsf{S_{20}=560}} }

Perguntas interessantes