a solução do sistema:
{Log5^X - Log5^Y = 1
{ 4^Y = 2^x-6
é o par (a,b) então o produto ab é?
ALGUEM AJUDA!!!!
superaks:
hmm, deixa eu rever
Soluções para a tarefa
Respondido por
1
Olá Marcelo.
Pela condição de existência dos logaritmos, o logaritmando precisa ser maior que 0, portanto:
![C.E\begin{cases}\mathsf{x>0}\\\mathsf{y>0}\end{cases} C.E\begin{cases}\mathsf{x>0}\\\mathsf{y>0}\end{cases}](https://tex.z-dn.net/?f=C.E%5Cbegin%7Bcases%7D%5Cmathsf%7Bx%26gt%3B0%7D%5C%5C%5Cmathsf%7By%26gt%3B0%7D%5Cend%7Bcases%7D)
Organizando e resolvendo a equação:
![\begin{cases}\mathsf{\ell og_5(x)-\ell og_5(y)=1~(s_1)}\\\mathsf{4^y=2^{x-6~}~(s_2)}\end{cases}\\\\\\\underline{\qquad\qquad\qquad}\\\\\\\mathsf{\ell og_5(x)-\ell og_5(y)=1\cdot \ell og_55~~~(s_1)}\\\\\mathsf{\ell og_5\Big(\dfrac{x}{y}\Big)=\ell og_5(5)}\\\\\mathsf{\dfrac{x}{y}=5}\\\\\mathsf{x=5y}\\\\\\\underline{\qquad\qquad\qquad}\\\\\\\mathsf{4^y=2^{x-6}~~(s_2)}\\\\\mathsf{(2^2)^y=2^{5y-6}}\\\\\mathsf{2^{2y}=2^{5y-6}}\\\\\mathsf{2y=5y-6}\\\\\mathsf{2y-5y=-6} \begin{cases}\mathsf{\ell og_5(x)-\ell og_5(y)=1~(s_1)}\\\mathsf{4^y=2^{x-6~}~(s_2)}\end{cases}\\\\\\\underline{\qquad\qquad\qquad}\\\\\\\mathsf{\ell og_5(x)-\ell og_5(y)=1\cdot \ell og_55~~~(s_1)}\\\\\mathsf{\ell og_5\Big(\dfrac{x}{y}\Big)=\ell og_5(5)}\\\\\mathsf{\dfrac{x}{y}=5}\\\\\mathsf{x=5y}\\\\\\\underline{\qquad\qquad\qquad}\\\\\\\mathsf{4^y=2^{x-6}~~(s_2)}\\\\\mathsf{(2^2)^y=2^{5y-6}}\\\\\mathsf{2^{2y}=2^{5y-6}}\\\\\mathsf{2y=5y-6}\\\\\mathsf{2y-5y=-6}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cmathsf%7B%5Cell+og_5%28x%29-%5Cell+og_5%28y%29%3D1%7E%28s_1%29%7D%5C%5C%5Cmathsf%7B4%5Ey%3D2%5E%7Bx-6%7E%7D%7E%28s_2%29%7D%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5Cunderline%7B%5Cqquad%5Cqquad%5Cqquad%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+og_5%28x%29-%5Cell+og_5%28y%29%3D1%5Ccdot+%5Cell+og_55%7E%7E%7E%28s_1%29%7D%5C%5C%5C%5C%5Cmathsf%7B%5Cell+og_5%5CBig%28%5Cdfrac%7Bx%7D%7By%7D%5CBig%29%3D%5Cell+og_5%285%29%7D%5C%5C%5C%5C%5Cmathsf%7B%5Cdfrac%7Bx%7D%7By%7D%3D5%7D%5C%5C%5C%5C%5Cmathsf%7Bx%3D5y%7D%5C%5C%5C%5C%5C%5C%5Cunderline%7B%5Cqquad%5Cqquad%5Cqquad%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B4%5Ey%3D2%5E%7Bx-6%7D%7E%7E%28s_2%29%7D%5C%5C%5C%5C%5Cmathsf%7B%282%5E2%29%5Ey%3D2%5E%7B5y-6%7D%7D%5C%5C%5C%5C%5Cmathsf%7B2%5E%7B2y%7D%3D2%5E%7B5y-6%7D%7D%5C%5C%5C%5C%5Cmathsf%7B2y%3D5y-6%7D%5C%5C%5C%5C%5Cmathsf%7B2y-5y%3D-6%7D)
![\mathsf{-3y=-6~\cdot\Big(-\dfrac{1}{3}\Big)}\\\\\boxed{\mathsf{y=2}}\\\\\\\underline{\qquad\qquad\qquad}\\\\\\\mathsf{x=5y}\\\\\mathsf{x=5\cdot2}\\\\\boxed{\mathsf{x=10}} \mathsf{-3y=-6~\cdot\Big(-\dfrac{1}{3}\Big)}\\\\\boxed{\mathsf{y=2}}\\\\\\\underline{\qquad\qquad\qquad}\\\\\\\mathsf{x=5y}\\\\\mathsf{x=5\cdot2}\\\\\boxed{\mathsf{x=10}}](https://tex.z-dn.net/?f=%5Cmathsf%7B-3y%3D-6%7E%5Ccdot%5CBig%28-%5Cdfrac%7B1%7D%7B3%7D%5CBig%29%7D%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7By%3D2%7D%7D%5C%5C%5C%5C%5C%5C%5Cunderline%7B%5Cqquad%5Cqquad%5Cqquad%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bx%3D5y%7D%5C%5C%5C%5C%5Cmathsf%7Bx%3D5%5Ccdot2%7D%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7Bx%3D10%7D%7D)
Portanto, a solução dese sistema é (10, 2).
Produto dos pares ordenados é igual a:
![\boxed{\mathsf{10\cdot2 = 20}} \boxed{\mathsf{10\cdot2 = 20}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathsf%7B10%5Ccdot2+%3D+20%7D%7D)
Dúvidas? comente.
Pela condição de existência dos logaritmos, o logaritmando precisa ser maior que 0, portanto:
Organizando e resolvendo a equação:
Portanto, a solução dese sistema é (10, 2).
Produto dos pares ordenados é igual a:
Dúvidas? comente.
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Português,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás