A razão entre as medidas do ângulo interno e do ângulo externo de um polígono regular é 9. Nessas condições, o número de diagonais desse polígono é:
a) 20
b) 35
c) 54
d) 170
e) 230
Soluções para a tarefa
Respondido por
7
Ai
------- = 9
Ae
Ai =![\frac{180(n-2)}{n} = \frac{180n-360}{n} \frac{180(n-2)}{n} = \frac{180n-360}{n}](https://tex.z-dn.net/?f=++%5Cfrac%7B180%28n-2%29%7D%7Bn%7D++%3D+%5Cfrac%7B180n-360%7D%7Bn%7D+)
Ae=![\frac{360}{n} \frac{360}{n}](https://tex.z-dn.net/?f=+%5Cfrac%7B360%7D%7Bn%7D+)
![\frac{180n-360}{n} : \frac{360}{n} = 9--\ \textgreater \ \frac{x}{y} \frac{180n-360}{n} * \frac{n}{360} = \frac{180n-360}{360} = 9 \frac{180n-360}{n} : \frac{360}{n} = 9--\ \textgreater \ \frac{x}{y} \frac{180n-360}{n} * \frac{n}{360} = \frac{180n-360}{360} = 9](https://tex.z-dn.net/?f=+%5Cfrac%7B180n-360%7D%7Bn%7D+%3A+%5Cfrac%7B360%7D%7Bn%7D+%3D+9--%5C+%5Ctextgreater+%5C++%5Cfrac%7Bx%7D%7By%7D+%5Cfrac%7B180n-360%7D%7Bn%7D+%2A+%5Cfrac%7Bn%7D%7B360%7D+%3D+%5Cfrac%7B180n-360%7D%7B360%7D+%3D+9)
180n - 360 = 3240
180n = 3240 + 360=
180n = 3600
n = 3600/180
n = 20 lados
![D = \frac{n(n-3)}{2} D = \frac{n(n-3)}{2}](https://tex.z-dn.net/?f=D+%3D++%5Cfrac%7Bn%28n-3%29%7D%7B2%7D+)
![D = \frac{20(20-3)}{2} = \frac{20.17}{2}= \frac{340}{2} =170 D = \frac{20(20-3)}{2} = \frac{20.17}{2}= \frac{340}{2} =170](https://tex.z-dn.net/?f=D+%3D++%5Cfrac%7B20%2820-3%29%7D%7B2%7D+%3D+%5Cfrac%7B20.17%7D%7B2%7D%3D+%5Cfrac%7B340%7D%7B2%7D+%3D170)
Letra D) 170 diagonais
------- = 9
Ae
Ai =
Ae=
180n - 360 = 3240
180n = 3240 + 360=
180n = 3600
n = 3600/180
n = 20 lados
Letra D) 170 diagonais
Perguntas interessantes