Matemática, perguntado por sntanna, 1 ano atrás

A raiz quadrada de 40 é 2 raiz quadrada de 5??

Soluções para a tarefa

Respondido por GeniusMaia
7
Olá,

Vamos verificar. Como 40 não é um quadrado perfeito, vamos decompô-lo em números primeiros.
40 | 2
20 | 2
10 | 2
5   | 5
1   

Multiplicando todos esses divisores, temos: 2x2x2x5 = 2²x2x5
Assim:
√40 = √2²x2x5
√40 = 2√2x5
√40 = 2√10

Logo, 2√5 ≠ 2√10. Portanto, 2√5 não é raiz quadrada de 40.

Bons estudos ;)
Respondido por MaHePire
3

Resposta:

Não

\sqrt{40} \neq 2\sqrt{5}\\\sqrt{40} = 2\sqrt{10}

Explicação passo-a-passo:

\sqrt{40} =

40|2\\20|2\\10|10\\1|2^{2} \cdotp10

\sqrt{2^{2} \cdotp10} =\\\sqrt{2^{2}} \sqrt{10} =\\\sqrt{4} \sqrt{10} =\\2\sqrt{10}

Perguntas interessantes