Matemática, perguntado por leocoiler, 1 ano atrás

A primitiva de ∫ ( θ - cossecθ cotgθ)dθ é :

a)  \frac{1}{2} θ² - cossecθ + c

b) θ² + cossecθ + c

c) \frac{1}{2} θ² + cossecθ + c

d) \frac{1}{2} θ² + secθ + c

e)  \frac{1}{2} θ² - secθ + c

Soluções para a tarefa

Respondido por niltonjr2001
2
\mathrm{\int(\theta-\csc{\theta}\cot{\theta})\ d\theta=\int\theta\ d\theta-\int\csc{\theta}\cot{\theta}\ d\theta=}\\\\ \mathrm{=\dfrac{\theta^2}{2}-\int\dfrac{1}{\sin{\theta}}\dfrac{\cos{\theta}}{\sin{\theta}}\ d\theta=\dfrac{\theta^2}{2}-\int\dfrac{\cos{\theta}}{\sin^2{\theta}}\ d\theta}

\mathbf{*\ Resolvendo\ \int\dfrac{\cos{\theta}}{\sin^2{\theta}}\ d\theta:}\\\\ \mathrm{u=\sin{\theta}\ \ \| \ \ \dfrac{du}{dx}=\cos{\theta}\ \to\ du=\cos{\theta}.dx}\\\\ \mathrm{\int\dfrac{1}{\sin^2{\theta}}.\cos{\theta}\ d\theta=\int\dfrac{1}{u^2}\ du=\int u^{-2}\ du=\dfrac{u^{-2+1}}{-2+1}=}\\\\ \mathrm{=\dfrac{u^{-1}}{-1}=-\dfrac{1}{u}=-\dfrac{1}{\sin{\theta}}=-\csc{\theta}}

\mathbf{*\ Voltando\ ao\ problema:}\\\\ \mathrm{\int(\theta-\csc{\theta}\cot{\theta})\ d\theta=\dfrac{\theta^2}{2}-(-\csc{\theta})=\boxed{\boxed{\mathbf{\dfrac{\theta^2}{2}+\csc{\theta}}+C}}}

Resposta: Alternativa C.

GFerraz: Correto, mas seria mais rápido usar que (d/dx) csc x = -cossec x . cotg x :)
niltonjr2001: Poxa, verdade, hehehe.
Perguntas interessantes