Matemática, perguntado por suzanaclaro539, 1 ano atrás

a pergunta e resposta da 10 e11

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0
a) \left(\dfrac{1}{2}+2i\right)\left(\dfrac{1}{3}-3i\right)=\dfrac{1}{2}\cdot\dfrac{1}{3}-\dfrac{3i}{2}+\dfrac{2i}{3}-6i^2

i^2=-1 e \text{mmc}(2,3)=6

\left(\dfrac{1}{2}+2i\right)\left(\dfrac{1}{3}-3i\right)=\dfrac{1}{6}-\dfrac{3i}{2}+\dfrac{2i}{3}-6\cdot(-1)

\left(\dfrac{1}{2}+2i\right)\left(\dfrac{1}{3}-3i\right)=\dfrac{1-9i+6i+36}{6}

b) \left(\dfrac{1}{2}+2i\right)\left(\dfrac{1}{3}-3i\right)=\dfrac{37}{6}-\dfrac{3i}{6}

\left(\dfrac{1}{2}+2i\right)\left(\dfrac{1}{3}-3i\right)=\dfrac{37}{6}-\dfrac{1}{2}i


b) (1+i)(1+i)^3(1+i)^{-1}=(1+i)^{1+3-1}=(1+i)^{3}=1+3i+3i^2+i^3

i^2=-1 e i^3=-i

(1+i)(1+i)^3(1+i)^{-1}=1+3i+3\cdot(-1)-i=1+2i-3=-2+2i

c) 3(7+2i)-[(5+4i)+1]=21+6i-[6+4i]=21+6i-6-4i=15+2i

11)
a) (2-3i)(-2+i)=-4+2i+6i-3i^2=-4+8i+3=-1+8i

b) (3+i)(3-i)\left(\dfrac{1}{5}+\dfrac{1}{10}i\right)=2+i

(3+i)(3-i)=3^2-i^2=9-(-1)=10

(3+i)(3-i)\left(\dfrac{1}{5}+\dfrac{1}{10}i\right)=10\cdot\left(\dfrac{1}{10}+\dfrac{1}{10}i\right)

(3+i)(3-i)\left(\dfrac{1}{5}+\dfrac{1}{10}i\right)=\dfrac{10}{10}+\dfrac{10}{10}i

(3+i)(3-i)\left(\dfrac{1}{5}+\dfrac{1}{10}i\right)=1+i

suzanaclaro539: a resposta da a é 37/6 _5i/6
suzanaclaro539: Obrigada
Perguntas interessantes