A parábola representada pela equação y= ax² + bx passa pelos pontos A= (1/3,1) e B= (1,2). Calcule os valores de a e b
Soluções para a tarefa
Respondido por
43
Ae Mikael,
vamos identificar alguns dados:
![\begin{cases}\mathsf{x= \dfrac{1}{3}~~e~~1 }\\\\\mathsf{y=1~~e~~2}\end{cases} \begin{cases}\mathsf{x= \dfrac{1}{3}~~e~~1 }\\\\\mathsf{y=1~~e~~2}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cmathsf%7Bx%3D+%5Cdfrac%7B1%7D%7B3%7D%7E%7Ee%7E%7E1+%7D%5C%5C%5C%5C%5Cmathsf%7By%3D1%7E%7Ee%7E%7E2%7D%5Cend%7Bcases%7D)
vamos então montar um sistema de equações do 1° grau, nas incógnitas (a) e (b), tomando a função do 2° grau, vejamos:
![\begin{cases}\mathsf{y=ax^2+bx~~(i)}\\
\mathsf{y=ax^2+bx~~(ii)}\end{cases}\\\\\\
\mathsf{Substituindo,~teremos}\\\\\\
\begin{cases}\mathsf{a\cdot \dfrac{1}{3} ^2+b\cdot \dfrac{1}{3}=1~~(i) }\\\\\mathsf{a\cdot1^2+b\cdot1=2~~(ii)}\end{cases}\\\\\\
\begin{cases}\mathsf{ \dfrac{1}{9}a+ \dfrac{1}{3}b=1~~(i) }\\\mathsf{a+b=2~~(ii)}\end{cases} \begin{cases}\mathsf{y=ax^2+bx~~(i)}\\
\mathsf{y=ax^2+bx~~(ii)}\end{cases}\\\\\\
\mathsf{Substituindo,~teremos}\\\\\\
\begin{cases}\mathsf{a\cdot \dfrac{1}{3} ^2+b\cdot \dfrac{1}{3}=1~~(i) }\\\\\mathsf{a\cdot1^2+b\cdot1=2~~(ii)}\end{cases}\\\\\\
\begin{cases}\mathsf{ \dfrac{1}{9}a+ \dfrac{1}{3}b=1~~(i) }\\\mathsf{a+b=2~~(ii)}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cmathsf%7By%3Dax%5E2%2Bbx%7E%7E%28i%29%7D%5C%5C%0A%5Cmathsf%7By%3Dax%5E2%2Bbx%7E%7E%28ii%29%7D%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7BSubstituindo%2C%7Eteremos%7D%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%5Cmathsf%7Ba%5Ccdot+%5Cdfrac%7B1%7D%7B3%7D+%5E2%2Bb%5Ccdot+%5Cdfrac%7B1%7D%7B3%7D%3D1%7E%7E%28i%29+%7D%5C%5C%5C%5C%5Cmathsf%7Ba%5Ccdot1%5E2%2Bb%5Ccdot1%3D2%7E%7E%28ii%29%7D%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%5Cmathsf%7B+%5Cdfrac%7B1%7D%7B9%7Da%2B+%5Cdfrac%7B1%7D%7B3%7Db%3D1%7E%7E%28i%29++%7D%5C%5C%5Cmathsf%7Ba%2Bb%3D2%7E%7E%28ii%29%7D%5Cend%7Bcases%7D)
![\mathsf{a=2-b~~(ii)}\\\\
\mathsf{ \dfrac{1}{9}\cdot(2-b)+ \dfrac{1}{3}b=1~~(ii~em~~i) }\\\\
\mathsf{ \dfrac{2-b}{9}+ \dfrac{b}{3} =1 }\\\\
\mathsf{ \dfrac{1\cdot(2-b)+3\cdot b}{\not9}= \dfrac{3\cdot3}{\not9}}\\\\
\mathsf{2-b+3b=9}\\
\mathsf{2b=7}\\\\
\boxed{\mathsf{b= \dfrac{7}{2} }}
\mathsf{a=2-b~~(ii)}\\\\
\mathsf{ \dfrac{1}{9}\cdot(2-b)+ \dfrac{1}{3}b=1~~(ii~em~~i) }\\\\
\mathsf{ \dfrac{2-b}{9}+ \dfrac{b}{3} =1 }\\\\
\mathsf{ \dfrac{1\cdot(2-b)+3\cdot b}{\not9}= \dfrac{3\cdot3}{\not9}}\\\\
\mathsf{2-b+3b=9}\\
\mathsf{2b=7}\\\\
\boxed{\mathsf{b= \dfrac{7}{2} }}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%3D2-b%7E%7E%28ii%29%7D%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B1%7D%7B9%7D%5Ccdot%282-b%29%2B+%5Cdfrac%7B1%7D%7B3%7Db%3D1%7E%7E%28ii%7Eem%7E%7Ei%29++%7D%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B2-b%7D%7B9%7D%2B+%5Cdfrac%7Bb%7D%7B3%7D+%3D1+%7D%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B1%5Ccdot%282-b%29%2B3%5Ccdot+b%7D%7B%5Cnot9%7D%3D+%5Cdfrac%7B3%5Ccdot3%7D%7B%5Cnot9%7D%7D%5C%5C%5C%5C%0A%5Cmathsf%7B2-b%2B3b%3D9%7D%5C%5C%0A%5Cmathsf%7B2b%3D7%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bb%3D+%5Cdfrac%7B7%7D%7B2%7D+%7D%7D%0A)
Achamos (b), agora acharemos (a):
![\mathsf{a+b=2}\\\\
\mathsf{a+ \dfrac{7}{2} =2}\\\\
\mathsf{a=2- \dfrac{7}{2} }\\\\
\boxed{\mathsf{a=- \dfrac{3}{2} }} \mathsf{a+b=2}\\\\
\mathsf{a+ \dfrac{7}{2} =2}\\\\
\mathsf{a=2- \dfrac{7}{2} }\\\\
\boxed{\mathsf{a=- \dfrac{3}{2} }}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%2Bb%3D2%7D%5C%5C%5C%5C%0A%5Cmathsf%7Ba%2B+%5Cdfrac%7B7%7D%7B2%7D+%3D2%7D%5C%5C%5C%5C%0A%5Cmathsf%7Ba%3D2-+%5Cdfrac%7B7%7D%7B2%7D+%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Ba%3D-+%5Cdfrac%7B3%7D%7B2%7D+%7D%7D)
Pronto, agora vamos escrever a função do 2° grau:
![\large\boxed{\mathsf{y=- \dfrac{3}{2}x^2+ \dfrac{7}{2}x} } \large\boxed{\mathsf{y=- \dfrac{3}{2}x^2+ \dfrac{7}{2}x} }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cmathsf%7By%3D-+%5Cdfrac%7B3%7D%7B2%7Dx%5E2%2B+%5Cdfrac%7B7%7D%7B2%7Dx%7D++%7D)
Tenha ótimos estudos ;P
vamos identificar alguns dados:
vamos então montar um sistema de equações do 1° grau, nas incógnitas (a) e (b), tomando a função do 2° grau, vejamos:
Achamos (b), agora acharemos (a):
Pronto, agora vamos escrever a função do 2° grau:
Tenha ótimos estudos ;P
Perguntas interessantes
Português,
11 meses atrás
Ed. Física,
11 meses atrás
História,
11 meses atrás
Ed. Técnica,
1 ano atrás
Matemática,
1 ano atrás