Matemática, perguntado por gabeagrdasilva, 6 meses atrás

A medida do ângulo interno de um decágono regular é?

Por Favor se alguem responder faz o calculo a continha

Soluções para a tarefa

Respondido por vilarr77
1

Resposta:

Como a soma das medidas dos ângulos internos de um triângulo é 180°, temos que a soma das medidas dos ângulos internos de um decágono é 1440°. No caso como o decágono é regular a medida de cada um de seus ângulos internos é dada por 1440° : 10 = 144°.

Respondido por Math739
0

O valor de cada ângulo interno de um polígono é dada pela fórmula:

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \frac{(n - 2) \cdot180 {}^{ \circ} }{n} \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered}   \begin{cases}  \sf a_i  = ângulo \,interno=? \\  \sf n = n\acute{u}mero \,de\, lados  = 10\end{cases}\end{gathered}$}

Calculando o valor do ângulo interno de um decágono pela fórmula temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \dfrac{(n - 2) \cdot180 {}^{ \circ} }{n} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \frac{(10 - 2) \cdot180 {}^{ \circ} }{10} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \frac{8 \cdot180 {}^{ \circ} }{10} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \dfrac{1440 {}^{ \circ} }{10} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i = 144 {}^{ \circ} \end{gathered}$}

Portanto, o valor de cada ângulo interno de um decágono é:

\Large\displaystyle\text{$\begin{gathered}  \boxed{ \boxed{ \bf{144{}^{ \circ} }}}\end{gathered}$}

Perguntas interessantes