Matemática, perguntado por polliemanuella, 6 meses atrás

A matriz inversa de é igual a:

Anexos:

Soluções para a tarefa

Respondido por Skoy
12

A matriz inversa será: \large\displaystyle\text{$\begin{aligned} A^{-1}=\left[\begin{array}{ccc}6&4&-11\\5&3&-9\\-8&-5&14\end{array}\right]  \end{aligned}$}.

Para calcular a matriz \bb A^{-1} , temos alguns métodos possíveis. O que eu irei utilizar será o da Matriz Adjunta. Esse método consiste que 4 passos. Sendo o primeiro calcular o determinante de A. Logo, dada a matriz:

\large\displaystyle\text{$\begin{aligned} A=\left[\begin{array}{ccc}-3&-1&-3\\2&-4&-1\\-1&-2&-2\end{array}\right]  \end{aligned}$}

Seu determinante será:

\large\displaystyle\text{$\begin{aligned} D(A)=\underbrace{\left|\begin{array}{ccc}-3&-1&-3\\2&-4&-1\\-1&-2&-2\end{array}\right| \left|\begin{array}{ccc}-3&-1\\2&-4\\-1&-2\end{array}\right|}_{\large\displaystyle\text{$\begin{aligned} D(A)= 1 \end{aligned}$}}  \end{aligned}$}

  • Agora, o segundo passo será calcular os cofatores da matriz A. Logo:

\large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-4&-1\\-2&-2\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_1 = 6\end{aligned}$}}  \end{aligned}$}  \large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}2&-1\\-1&-2\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_2 = -5\end{aligned}$}}  \end{aligned}$} \large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}2&-4\\-1&-2\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_3 = -8\end{aligned}$}}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-1&-3\\-2&-2\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_4 = -4\end{aligned}$}}  \end{aligned}$} \large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-3&-3\\-1&-2\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_5 = 3\end{aligned}$}}  \end{aligned}$} \large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-3&-1\\-1&-2\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_6 = 5\end{aligned}$}}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-1&-3\\-4&-1\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_7 = -11\end{aligned}$}}  \end{aligned}$} \large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-3&-3\\2&-1\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_8 = 9\end{aligned}$}}  \end{aligned}$} \large\displaystyle\text{$\begin{aligned}\underbrace{ \left[\begin{array}{ccc}-3&-1\\2&-4\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} C_9 = 14\end{aligned}$}}  \end{aligned}$}

Feito isso, devemos agora criar uma matriz com os cofatores. Para criar a matriz dos cofatores, devemos seguir uma ordemzinha "( mantem e troca )" o sinal. Após isso calcular sua tramposta.

\large\displaystyle\text{$\begin{aligned} \underbrace{\left[\begin{array}{ccc}6&5&-8\\4&3&-5\\-11&-9&14\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} Matriz\ dos\ cofatores.\end{aligned}$}}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \underbrace{\left[\begin{array}{ccc}6&4&-11\\5&3&-9\\-8&-5&14\end{array}\right]}_{\large\displaystyle\text{$\begin{aligned} Matriz\ transposta.\end{aligned}$}}  \end{aligned}$}

Quarto passo. Pegue a matriz transposta dos cofatores e divida pelo determinante de A. Assim encontrando a matriz inversa. Logo:

\large\displaystyle\text{$\begin{aligned} A^{-1}=\frac{\left[\begin{array}{ccc}6&4&-11\\5&3&-9\\-8&-5&14\end{array}\right]}{D(A)}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} A^{-1}=\frac{\left[\begin{array}{ccc}6&4&-11\\5&3&-9\\-8&-5&14\end{array}\right]}{1}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \therefore \boxed{\boxed{\green{A^{-1}=\left[\begin{array}{ccc}6&4&-11\\5&3&-9\\-8&-5&14\end{array}\right]}}}  \end{aligned}$}

Veja mais sobre:

Matriz inversa.

\blue{\square} brainly.com.br/tarefa/30334312

Anexos:

Aleske: Bela resposta!!
Emerre: Muito boa, amigo!
Kin07: Muito bem.
Perguntas interessantes