Matemática, perguntado por eloanebarrosjorge, 6 meses atrás

a) m.m.c (120,300,60)






b) m.m.c (50,30,8)


me ajudem pfv












Soluções para a tarefa

Respondido por xXBrunaXx44
15

a) 120, 300, 60 | 2

60, 150, 30 | 2

30, 75, 15 | 2

15, 75, 15 | 3

5, 25, 5 | 5

1, 5, 1 | 5

1, 1, 1 | 1

MMC = 2 . 2 . 2 . 3 . 5 . 5 = 600

________________________________

b) 50, 30, 8 | 2

25, 15, 4 | 2

25, 15, 2 | 2

25, 15, 1 | 3

25, 5, 1 | 5

5, 1, 1 | 5

1, 1, 1 | 1

MMC = 2 . 2 . 2 . 3 . 5 . 5 = 600

Bons estudos ツ꧂

Respondido por Math739
5

Resposta:

\textsf{Segue as respostas abaixo}

Explicação passo-a-passo:

\begin{array}{r|l}\sf120,300,60&\sf2\\\sf60,150,30&\sf2\\\sf30,75,15&\sf2\\\sf15,75,15&\sf3\\\sf5,25,5&\sf5\\\sf1,5,1&\sf5\\\sf1,1,1&\!\!\!\overline{~\,\sf2^3\cdot3\cdot5^2=600\quad}\end{array}

\boxed{\boxed{ \mathsf{ MMC(120,300,60)=600}}}

\begin{array}{r|l}\sf50,30,8&\sf2\\\sf25,15,4&\sf2\\\sf25,15,2&\sf2\\\sf25,15,1&\sf3\\\sf25,5,1&\sf5\\\sf5,1,1&\sf5\\\sf1,1,1&\!\!\!\overline{~\,\sf2^3\cdot3\cdot5^2=600\quad}\end{array}

 \boxed{\boxed{\mathsf{ MMC(50,30,8)=600}}}

Perguntas interessantes