A integral
vale:
a) 4
b) 2
c) 3
d) 1
e) 6
Soluções para a tarefa
Respondido por
4
Para o cálculo dessa integral tripla, usamos o Teorema de Fubini (integrais iteradas):
![\displaystyle\int_1^e \int_1^{e^2}\int_1^{e^3}\frac{1}{xyz}\,dx\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\int_1^{e^3}\frac{1}{yz}\cdot \frac{1}{x}\,dx\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{1}{yz}\cdot (\mathrm{\ell n}\,x)\Big|_1^{e^{3}}\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{1}{yz}\cdot \big[\mathrm{\ell n}(e^3)-\mathrm{\ell n}\,1\big]\,dy\,dz \displaystyle\int_1^e \int_1^{e^2}\int_1^{e^3}\frac{1}{xyz}\,dx\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\int_1^{e^3}\frac{1}{yz}\cdot \frac{1}{x}\,dx\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{1}{yz}\cdot (\mathrm{\ell n}\,x)\Big|_1^{e^{3}}\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{1}{yz}\cdot \big[\mathrm{\ell n}(e^3)-\mathrm{\ell n}\,1\big]\,dy\,dz](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cint_1%5E%7Be%5E3%7D%5Cfrac%7B1%7D%7Bxyz%7D%5C%2Cdx%5C%2Cdy%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cint_1%5E%7Be%5E3%7D%5Cfrac%7B1%7D%7Byz%7D%5Ccdot+%5Cfrac%7B1%7D%7Bx%7D%5C%2Cdx%5C%2Cdy%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cfrac%7B1%7D%7Byz%7D%5Ccdot+%28%5Cmathrm%7B%5Cell+n%7D%5C%2Cx%29%5CBig%7C_1%5E%7Be%5E%7B3%7D%7D%5C%2Cdy%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cfrac%7B1%7D%7Byz%7D%5Ccdot+%5Cbig%5B%5Cmathrm%7B%5Cell+n%7D%28e%5E3%29-%5Cmathrm%7B%5Cell+n%7D%5C%2C1%5Cbig%5D%5C%2Cdy%5C%2Cdz)
![=\displaystyle\int_1^e \int_1^{e^2}\frac{1}{yz}\cdot \big[3\cdot 1-0\big]\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{3}{yz}\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{3}{z}\cdot \frac{1}{y}\,dy\,dz\\\\\\ =\int_1^e \frac{3}{z}\cdot (\mathrm{\ell n\,}y)\Big|_1^{e^2}\,dz =\displaystyle\int_1^e \int_1^{e^2}\frac{1}{yz}\cdot \big[3\cdot 1-0\big]\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{3}{yz}\,dy\,dz\\\\\\ =\int_1^e \int_1^{e^2}\frac{3}{z}\cdot \frac{1}{y}\,dy\,dz\\\\\\ =\int_1^e \frac{3}{z}\cdot (\mathrm{\ell n\,}y)\Big|_1^{e^2}\,dz](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cfrac%7B1%7D%7Byz%7D%5Ccdot+%5Cbig%5B3%5Ccdot+1-0%5Cbig%5D%5C%2Cdy%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cfrac%7B3%7D%7Byz%7D%5C%2Cdy%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cint_1%5E%7Be%5E2%7D%5Cfrac%7B3%7D%7Bz%7D%5Ccdot+%5Cfrac%7B1%7D%7By%7D%5C%2Cdy%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cfrac%7B3%7D%7Bz%7D%5Ccdot+%28%5Cmathrm%7B%5Cell+n%5C%2C%7Dy%29%5CBig%7C_1%5E%7Be%5E2%7D%5C%2Cdz)
![=\displaystyle\int_1^e \frac{3}{z}\cdot \big[\mathrm{\ell n}(e^2)-\mathrm{\ell n\,}1\big]\,dz\\\\\\ =\int_1^e \frac{3}{z}\cdot \big[2\,\mathrm{\ell n\,}e-\mathrm{\ell n\,}1\big]\,dz\\\\\\ =\int_1^e \frac{3}{z}\cdot \big[2\cdot 1-0\big]\,dz\\\\\\ =\int_1^e \frac{6}{z}\,dz =\displaystyle\int_1^e \frac{3}{z}\cdot \big[\mathrm{\ell n}(e^2)-\mathrm{\ell n\,}1\big]\,dz\\\\\\ =\int_1^e \frac{3}{z}\cdot \big[2\,\mathrm{\ell n\,}e-\mathrm{\ell n\,}1\big]\,dz\\\\\\ =\int_1^e \frac{3}{z}\cdot \big[2\cdot 1-0\big]\,dz\\\\\\ =\int_1^e \frac{6}{z}\,dz](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_1%5Ee+%5Cfrac%7B3%7D%7Bz%7D%5Ccdot+%5Cbig%5B%5Cmathrm%7B%5Cell+n%7D%28e%5E2%29-%5Cmathrm%7B%5Cell+n%5C%2C%7D1%5Cbig%5D%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cfrac%7B3%7D%7Bz%7D%5Ccdot+%5Cbig%5B2%5C%2C%5Cmathrm%7B%5Cell+n%5C%2C%7De-%5Cmathrm%7B%5Cell+n%5C%2C%7D1%5Cbig%5D%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cfrac%7B3%7D%7Bz%7D%5Ccdot+%5Cbig%5B2%5Ccdot+1-0%5Cbig%5D%5C%2Cdz%5C%5C%5C%5C%5C%5C+%3D%5Cint_1%5Ee+%5Cfrac%7B6%7D%7Bz%7D%5C%2Cdz)

Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7892693
Dúvidas? Comente.
Bons estudos! :-)
Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7892693
Dúvidas? Comente.
Bons estudos! :-)
Mkse:
Obrigadaaa!!
Perguntas interessantes
Geografia,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás