A integral de linha ∫c (x+yz) dx+2xdy+xyz dz, em que c e a curva dada pelas equações: x=1-t², y=3t+1 e z=1com 0 ≤ t ≤ 1, vale:
Soluções para a tarefa
Respondido por
11
Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador: https://brainly.com.br/tarefa/11563308
——————————
Queremos calcular a integral de linha de um campo vetorial sobre uma curva no espaço ℝ³.
![\displaystyle\int_C \overrightarrow{F}\cdot d\overrightarrow{r}\\\\\\ =\int_C (x+yz)\,dx+2x\,dy+xyz\,dz \displaystyle\int_C \overrightarrow{F}\cdot d\overrightarrow{r}\\\\\\ =\int_C (x+yz)\,dx+2x\,dy+xyz\,dz](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C+%5Coverrightarrow%7BF%7D%5Ccdot+d%5Coverrightarrow%7Br%7D%5C%5C%5C%5C%5C%5C+%3D%5Cint_C+%28x%2Byz%29%5C%2Cdx%2B2x%5C%2Cdy%2Bxyz%5C%2Cdz)
O campo vetorial em questão é
![\overrightarrow{F}(x,\,y,\,z)=P(x,\,y,\,z)\overrightarrow{i}+Q(x,\,y,\,z)\overrightarrow{j}+R(x,\,y,\,z)\overrightarrow{k}\\\\ \overrightarrow{F}(x,\,y,\,z)=(x+yz)\overrightarrow{i}+2x\overrightarrow{j}+xyz\overrightarrow{k} \overrightarrow{F}(x,\,y,\,z)=P(x,\,y,\,z)\overrightarrow{i}+Q(x,\,y,\,z)\overrightarrow{j}+R(x,\,y,\,z)\overrightarrow{k}\\\\ \overrightarrow{F}(x,\,y,\,z)=(x+yz)\overrightarrow{i}+2x\overrightarrow{j}+xyz\overrightarrow{k}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%28x%2C%5C%2Cy%2C%5C%2Cz%29%3DP%28x%2C%5C%2Cy%2C%5C%2Cz%29%5Coverrightarrow%7Bi%7D%2BQ%28x%2C%5C%2Cy%2C%5C%2Cz%29%5Coverrightarrow%7Bj%7D%2BR%28x%2C%5C%2Cy%2C%5C%2Cz%29%5Coverrightarrow%7Bk%7D%5C%5C%5C%5C+%5Coverrightarrow%7BF%7D%28x%2C%5C%2Cy%2C%5C%2Cz%29%3D%28x%2Byz%29%5Coverrightarrow%7Bi%7D%2B2x%5Coverrightarrow%7Bj%7D%2Bxyz%5Coverrightarrow%7Bk%7D)
sendo as suas componentes as funções reais de três variáveis
![\left\{\begin{matrix} P(x,\,y,\,z)&=&x+yz\\\\ Q(x,\,y,\,z)&=&2x\\\\ R(x,\,y,\,z)&=&xyz \end{matrix}\right. \left\{\begin{matrix} P(x,\,y,\,z)&=&x+yz\\\\ Q(x,\,y,\,z)&=&2x\\\\ R(x,\,y,\,z)&=&xyz \end{matrix}\right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D+P%28x%2C%5C%2Cy%2C%5C%2Cz%29%26amp%3B%3D%26amp%3Bx%2Byz%5C%5C%5C%5C+Q%28x%2C%5C%2Cy%2C%5C%2Cz%29%26amp%3B%3D%26amp%3B2x%5C%5C%5C%5C+R%28x%2C%5C%2Cy%2C%5C%2Cz%29%26amp%3B%3D%26amp%3Bxyz+%5Cend%7Bmatrix%7D%5Cright.)
A curva sobre a qual calcularemos a integral de linha é a curva C, parametrizada da seguinte forma:
![C:~~\left\begin{Bmatrix}x(t)&=&1-t^2\\\\ y(t)&=&3t+1\\\\ z(t)&=&1 \end{matrix}\right.\qquad\qquad 0\le t\le 1. C:~~\left\begin{Bmatrix}x(t)&=&1-t^2\\\\ y(t)&=&3t+1\\\\ z(t)&=&1 \end{matrix}\right.\qquad\qquad 0\le t\le 1.](https://tex.z-dn.net/?f=C%3A%7E%7E%5Cleft%5Cbegin%7BBmatrix%7Dx%28t%29%26amp%3B%3D%26amp%3B1-t%5E2%5C%5C%5C%5C+y%28t%29%26amp%3B%3D%26amp%3B3t%2B1%5C%5C%5C%5C+z%28t%29%26amp%3B%3D%26amp%3B1+%5Cend%7Bmatrix%7D%5Cright.%5Cqquad%5Cqquad+0%5Cle+t%5Cle+1.)
—————
Encontrando o vetor tangente à curva C. Aqui, basta derivar as componentes de C em relação a t:
![C'(t)=\left\langle x'(t),\,y'(t),\,z'(t)\right\rangle\\\\ C'(t)=\left\langle \frac{d}{dt}(1-t^2),\,\frac{d}{dt}(3t+1),\,\frac{d}{dt}(1)\right\rangle\\\\ C'(t)=\left\langle -2t,\,3,\,0\right\rangle C'(t)=\left\langle x'(t),\,y'(t),\,z'(t)\right\rangle\\\\ C'(t)=\left\langle \frac{d}{dt}(1-t^2),\,\frac{d}{dt}(3t+1),\,\frac{d}{dt}(1)\right\rangle\\\\ C'(t)=\left\langle -2t,\,3,\,0\right\rangle](https://tex.z-dn.net/?f=C%27%28t%29%3D%5Cleft%5Clangle+x%27%28t%29%2C%5C%2Cy%27%28t%29%2C%5C%2Cz%27%28t%29%5Cright%5Crangle%5C%5C%5C%5C+C%27%28t%29%3D%5Cleft%5Clangle+%5Cfrac%7Bd%7D%7Bdt%7D%281-t%5E2%29%2C%5C%2C%5Cfrac%7Bd%7D%7Bdt%7D%283t%2B1%29%2C%5C%2C%5Cfrac%7Bd%7D%7Bdt%7D%281%29%5Cright%5Crangle%5C%5C%5C%5C+C%27%28t%29%3D%5Cleft%5Clangle+-2t%2C%5C%2C3%2C%5C%2C0%5Cright%5Crangle)
Para computamos a integral, escrevemos produto escalar entre o campo
e o vetor tangente C'(t), substituindo as variáveis x, y, z do campo pelas equações da curva parametrizada. Assim, a integral fica
![\displaystyle\int_C \overrightarrow{F}\cdot d\overrightarrow{r}\\\\\\ =\int_0^1\overrightarrow{F}\big(x(t),\,y(t),\,z(t)\big) \cdot C'(t)\,dt\\\\\\=\int_0^1\left\langle x+yz,\,2x,\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt\\\\\\=\int_0^1\left\langle (1-t^2)+(3t+1)\cdot 1,\,2(1-t^2),\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt\\\\\\=\int_0^1\left\langle 1-t^2+3t+1,\,2-2t^2,\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt\\\\\\=\int_0^1\left\langle -t^2+3t+2,\,2-2t^2,\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt \displaystyle\int_C \overrightarrow{F}\cdot d\overrightarrow{r}\\\\\\ =\int_0^1\overrightarrow{F}\big(x(t),\,y(t),\,z(t)\big) \cdot C'(t)\,dt\\\\\\=\int_0^1\left\langle x+yz,\,2x,\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt\\\\\\=\int_0^1\left\langle (1-t^2)+(3t+1)\cdot 1,\,2(1-t^2),\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt\\\\\\=\int_0^1\left\langle 1-t^2+3t+1,\,2-2t^2,\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt\\\\\\=\int_0^1\left\langle -t^2+3t+2,\,2-2t^2,\,1\right\rangle \cdot \left\langle -2t,\,3,\,0\right\rangle\,dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C+%5Coverrightarrow%7BF%7D%5Ccdot+d%5Coverrightarrow%7Br%7D%5C%5C%5C%5C%5C%5C+%3D%5Cint_0%5E1%5Coverrightarrow%7BF%7D%5Cbig%28x%28t%29%2C%5C%2Cy%28t%29%2C%5C%2Cz%28t%29%5Cbig%29+%5Ccdot+C%27%28t%29%5C%2Cdt%5C%5C%5C%5C%5C%5C%3D%5Cint_0%5E1%5Cleft%5Clangle+x%2Byz%2C%5C%2C2x%2C%5C%2C1%5Cright%5Crangle+%5Ccdot+%5Cleft%5Clangle+-2t%2C%5C%2C3%2C%5C%2C0%5Cright%5Crangle%5C%2Cdt%5C%5C%5C%5C%5C%5C%3D%5Cint_0%5E1%5Cleft%5Clangle+%281-t%5E2%29%2B%283t%2B1%29%5Ccdot+1%2C%5C%2C2%281-t%5E2%29%2C%5C%2C1%5Cright%5Crangle+%5Ccdot+%5Cleft%5Clangle+-2t%2C%5C%2C3%2C%5C%2C0%5Cright%5Crangle%5C%2Cdt%5C%5C%5C%5C%5C%5C%3D%5Cint_0%5E1%5Cleft%5Clangle+1-t%5E2%2B3t%2B1%2C%5C%2C2-2t%5E2%2C%5C%2C1%5Cright%5Crangle+%5Ccdot+%5Cleft%5Clangle+-2t%2C%5C%2C3%2C%5C%2C0%5Cright%5Crangle%5C%2Cdt%5C%5C%5C%5C%5C%5C%3D%5Cint_0%5E1%5Cleft%5Clangle+-t%5E2%2B3t%2B2%2C%5C%2C2-2t%5E2%2C%5C%2C1%5Cright%5Crangle+%5Ccdot+%5Cleft%5Clangle+-2t%2C%5C%2C3%2C%5C%2C0%5Cright%5Crangle%5C%2Cdt)
Expanda o produto escalar, multiplicando as coordenadas correspondentes e somando os produtos. E a integral acima fica
![=\displaystyle\int_0^1\big[(-t^2+3t+2)\cdot (-2t)+(2-2t^2)\cdot 3+1\cdot 0\big]dt\\\\\\ =\int_0^1\big[(2t^3-6t^2-4t)+(6-6t^2)+0\big]dt\\\\\\ =\int_0^1\big[2t^3-12t^2-4t+6\big]dt =\displaystyle\int_0^1\big[(-t^2+3t+2)\cdot (-2t)+(2-2t^2)\cdot 3+1\cdot 0\big]dt\\\\\\ =\int_0^1\big[(2t^3-6t^2-4t)+(6-6t^2)+0\big]dt\\\\\\ =\int_0^1\big[2t^3-12t^2-4t+6\big]dt](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E1%5Cbig%5B%28-t%5E2%2B3t%2B2%29%5Ccdot+%28-2t%29%2B%282-2t%5E2%29%5Ccdot+3%2B1%5Ccdot+0%5Cbig%5Ddt%5C%5C%5C%5C%5C%5C+%3D%5Cint_0%5E1%5Cbig%5B%282t%5E3-6t%5E2-4t%29%2B%286-6t%5E2%29%2B0%5Cbig%5Ddt%5C%5C%5C%5C%5C%5C+%3D%5Cint_0%5E1%5Cbig%5B2t%5E3-12t%5E2-4t%2B6%5Cbig%5Ddt)
![=\left[\dfrac{2t^4}{4}-\dfrac{12t^3}{3}-\dfrac{4t^2}{2}+6t\right]_0^1\\\\\\ =\left[\dfrac{2\cdot 1^4}{4}-\dfrac{12\cdot 1^3}{3}-\dfrac{4\cdot 1^2}{2}+6\cdot 1\right]-\left[\dfrac{2\cdot 0^4}{4}-\dfrac{12\cdot 0^3}{3}-\dfrac{4\cdot 0^2}{2}+6\cdot 0\right]\\\\\\ =\left[\dfrac{2}{4}-\dfrac{12}{3}-\dfrac{4}{2}+6\right]-0\\\\\\ =\left[\dfrac{6}{12}-\dfrac{48}{12}-\dfrac{24}{12}+\dfrac{72}{12}\right]-0\\\\\\ =\dfrac{6-48-24+72}{12}\\\\\\ =\dfrac{6}{12}\begin{array}{l}^{\div 6}\\^{\div 6} \end{array} =\left[\dfrac{2t^4}{4}-\dfrac{12t^3}{3}-\dfrac{4t^2}{2}+6t\right]_0^1\\\\\\ =\left[\dfrac{2\cdot 1^4}{4}-\dfrac{12\cdot 1^3}{3}-\dfrac{4\cdot 1^2}{2}+6\cdot 1\right]-\left[\dfrac{2\cdot 0^4}{4}-\dfrac{12\cdot 0^3}{3}-\dfrac{4\cdot 0^2}{2}+6\cdot 0\right]\\\\\\ =\left[\dfrac{2}{4}-\dfrac{12}{3}-\dfrac{4}{2}+6\right]-0\\\\\\ =\left[\dfrac{6}{12}-\dfrac{48}{12}-\dfrac{24}{12}+\dfrac{72}{12}\right]-0\\\\\\ =\dfrac{6-48-24+72}{12}\\\\\\ =\dfrac{6}{12}\begin{array}{l}^{\div 6}\\^{\div 6} \end{array}](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cdfrac%7B2t%5E4%7D%7B4%7D-%5Cdfrac%7B12t%5E3%7D%7B3%7D-%5Cdfrac%7B4t%5E2%7D%7B2%7D%2B6t%5Cright%5D_0%5E1%5C%5C%5C%5C%5C%5C+%3D%5Cleft%5B%5Cdfrac%7B2%5Ccdot+1%5E4%7D%7B4%7D-%5Cdfrac%7B12%5Ccdot+1%5E3%7D%7B3%7D-%5Cdfrac%7B4%5Ccdot+1%5E2%7D%7B2%7D%2B6%5Ccdot+1%5Cright%5D-%5Cleft%5B%5Cdfrac%7B2%5Ccdot+0%5E4%7D%7B4%7D-%5Cdfrac%7B12%5Ccdot+0%5E3%7D%7B3%7D-%5Cdfrac%7B4%5Ccdot+0%5E2%7D%7B2%7D%2B6%5Ccdot+0%5Cright%5D%5C%5C%5C%5C%5C%5C+%3D%5Cleft%5B%5Cdfrac%7B2%7D%7B4%7D-%5Cdfrac%7B12%7D%7B3%7D-%5Cdfrac%7B4%7D%7B2%7D%2B6%5Cright%5D-0%5C%5C%5C%5C%5C%5C+%3D%5Cleft%5B%5Cdfrac%7B6%7D%7B12%7D-%5Cdfrac%7B48%7D%7B12%7D-%5Cdfrac%7B24%7D%7B12%7D%2B%5Cdfrac%7B72%7D%7B12%7D%5Cright%5D-0%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B6-48-24%2B72%7D%7B12%7D%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B6%7D%7B12%7D%5Cbegin%7Barray%7D%7Bl%7D%5E%7B%5Cdiv+6%7D%5C%5C%5E%7B%5Cdiv+6%7D+%5Cend%7Barray%7D)
<———— esta é a resposta.
Bons estudos! :-)
——————————
Queremos calcular a integral de linha de um campo vetorial sobre uma curva no espaço ℝ³.
O campo vetorial em questão é
sendo as suas componentes as funções reais de três variáveis
A curva sobre a qual calcularemos a integral de linha é a curva C, parametrizada da seguinte forma:
—————
Encontrando o vetor tangente à curva C. Aqui, basta derivar as componentes de C em relação a t:
Para computamos a integral, escrevemos produto escalar entre o campo
Expanda o produto escalar, multiplicando as coordenadas correspondentes e somando os produtos. E a integral acima fica
Bons estudos! :-)
Lukyo:
Resposta foi corrigida. O resultado correto é 1/2. :)
Perguntas interessantes
Inglês,
11 meses atrás
Administração,
11 meses atrás
Biologia,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás