Matemática, perguntado por kohealex, 1 ano atrás

a integral de f (x)= \sqrt{x} (x+ \frac{1}{x} ) é:

Soluções para a tarefa

Respondido por ScreenBlack
0
Fun\c{c}\~ao:\\\\ f_{(x)}=\sqrt{x}(x+\frac{1}{x})\\\\ f_{(x)}=x\sqrt{x}+\frac{\sqrt{x}}{x}\\\\ f_{(x)}=\sqrt{x^3}+\frac{\sqrt{x}}{\sqrt{x}^2}\\\\ f_{(x)}=\sqrt{x^3}+\sqrt{x}^{-1}\\\\ f_{(x)}=x^{\frac{3}{2}}+x^{-\frac{1}{2}}\\\\\\ Integrando:\\\\ F_{(x)}=\displaystyle \int \left(x^{\frac{3}{2}}+x^{-\frac{1}{2}} \right).dx\\\\\\ F_{(x)}=\dfrac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+\dfrac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + constante


F_{(x)}=\dfrac{x^{\frac{5}{2}}}{\frac{5}{2}}+\dfrac{x^{\frac{1}{2}}}{\frac{1}{2}} + constante\\\\\\
\boxed{F_{(x)}=\dfrac{2x^{\frac{5}{2}}}{5}+2x^{\frac{1}{2}} + constante}


Espero ter ajudado.
Bons estudos!
Perguntas interessantes