a inequação -x²+12x+45>0
Soluções para a tarefa
Respondido por
1
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/722049
_______________
Resolver a inequação:
![\mathsf{-x^2+12x+45>0}\\\\ \mathsf{0>x^2-12x-45}\\\\ \mathsf{x^2-12x-45<0\qquad\quad(i)} \mathsf{-x^2+12x+45>0}\\\\ \mathsf{0>x^2-12x-45}\\\\ \mathsf{x^2-12x-45<0\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7B-x%5E2%2B12x%2B45%26gt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B0%26gt%3Bx%5E2-12x-45%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2-12x-45%26lt%3B0%5Cqquad%5Cquad%28i%29%7D)
Vamos encontrar as raízes do lado esquerdo:
![\left\{\!\begin{array}{l} \mathsf{a=1}\\\mathsf{b=-12}\\\mathsf{c=-45} \end{array}\right.\\\\\\\\ \mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=12^2-4\cdot 1\cdot (-45)}\\\\ \mathsf{\Delta=144+180}\\\\ \mathsf{\Delta=324} \left\{\!\begin{array}{l} \mathsf{a=1}\\\mathsf{b=-12}\\\mathsf{c=-45} \end{array}\right.\\\\\\\\ \mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=12^2-4\cdot 1\cdot (-45)}\\\\ \mathsf{\Delta=144+180}\\\\ \mathsf{\Delta=324}](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21%5Cbegin%7Barray%7D%7Bl%7D+%5Cmathsf%7Ba%3D1%7D%5C%5C%5Cmathsf%7Bb%3D-12%7D%5C%5C%5Cmathsf%7Bc%3D-45%7D+%5Cend%7Barray%7D%5Cright.%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3Db%5E2-4ac%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D12%5E2-4%5Ccdot+1%5Ccdot+%28-45%29%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D144%2B180%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D324%7D)
As raízes do lado esquerdo da inequação são:
![\begin{array}{rcl} \mathsf{r_1=\dfrac{-b-\sqrt{\Delta}}{2a}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-b+\sqrt{\Delta}}{2a}}\\\\ \mathsf{r_1=\dfrac{-(-12)-\sqrt{324}}{2\cdot 1}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-(-12)+\sqrt{324}}{2\cdot 1}}\\\\ \mathsf{r_1=\dfrac{12-18}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{12+18}{2}}\\\\ \mathsf{r_1=\dfrac{-6}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{30}{2}}\\\\ \mathsf{r_1=-3}&~\textsf{ e }~&\mathsf{r_2=15}\quad\longleftarrow\quad\textsf{(ra\'izes)} \end{array} \begin{array}{rcl} \mathsf{r_1=\dfrac{-b-\sqrt{\Delta}}{2a}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-b+\sqrt{\Delta}}{2a}}\\\\ \mathsf{r_1=\dfrac{-(-12)-\sqrt{324}}{2\cdot 1}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-(-12)+\sqrt{324}}{2\cdot 1}}\\\\ \mathsf{r_1=\dfrac{12-18}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{12+18}{2}}\\\\ \mathsf{r_1=\dfrac{-6}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{30}{2}}\\\\ \mathsf{r_1=-3}&~\textsf{ e }~&\mathsf{r_2=15}\quad\longleftarrow\quad\textsf{(ra\'izes)} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D+%5Cmathsf%7Br_1%3D%5Cdfrac%7B-b-%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B-b%2B%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D%5Cdfrac%7B-%28-12%29-%5Csqrt%7B324%7D%7D%7B2%5Ccdot+1%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B-%28-12%29%2B%5Csqrt%7B324%7D%7D%7B2%5Ccdot+1%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D%5Cdfrac%7B12-18%7D%7B2%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B12%2B18%7D%7B2%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D%5Cdfrac%7B-6%7D%7B2%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B30%7D%7B2%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D-3%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D15%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7B%28ra%5C%27izes%29%7D+%5Cend%7Barray%7D)
Fatorando o lado esquerdo de
ficamos com
![\mathsf{a(x-r_1)(x-r_2)<0}\\\\ \mathsf{(x-(-3))(x-15)<0}\\\\ \mathsf{(x+3)(x-15)<0}\quad\longleftarrow\quad\textsf{inequa\c{c}\~ao-produto\qquad(ii)} \mathsf{a(x-r_1)(x-r_2)<0}\\\\ \mathsf{(x-(-3))(x-15)<0}\\\\ \mathsf{(x+3)(x-15)<0}\quad\longleftarrow\quad\textsf{inequa\c{c}\~ao-produto\qquad(ii)}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%28x-r_1%29%28x-r_2%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28x-%28-3%29%29%28x-15%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28x%2B3%29%28x-15%29%26lt%3B0%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Binequa%5Cc%7Bc%7D%5C%7Eao-produto%5Cqquad%28ii%29%7D)
Montando o quadro de sinais:
![\begin{array}{cc} \mathsf{x+3}&\mathsf{\underline{~~---}\underset{-3}{\bullet}\underline{++++}\underset{15}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\ \mathsf{x-15}&\mathsf{\underline{~~---}\underset{-3}{\bullet}\underline{----}\underset{15}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\\\ \mathsf{(x+3)(x-15)}&\mathsf{\underline{~~+++}\underset{-3}{\bullet}\underline{----}\underset{15}{\bullet}\underline{+++~~}_{\blacktriangleright}} \end{array} \begin{array}{cc} \mathsf{x+3}&\mathsf{\underline{~~---}\underset{-3}{\bullet}\underline{++++}\underset{15}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\ \mathsf{x-15}&\mathsf{\underline{~~---}\underset{-3}{\bullet}\underline{----}\underset{15}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\\\ \mathsf{(x+3)(x-15)}&\mathsf{\underline{~~+++}\underset{-3}{\bullet}\underline{----}\underset{15}{\bullet}\underline{+++~~}_{\blacktriangleright}} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D+%5Cmathsf%7Bx%2B3%7D%26amp%3B%5Cmathsf%7B%5Cunderline%7B%7E%7E---%7D%5Cunderset%7B-3%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%2B%7D%5Cunderset%7B15%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Bx-15%7D%26amp%3B%5Cmathsf%7B%5Cunderline%7B%7E%7E---%7D%5Cunderset%7B-3%7D%7B%5Cbullet%7D%5Cunderline%7B----%7D%5Cunderset%7B15%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%28x%2B3%29%28x-15%29%7D%26amp%3B%5Cmathsf%7B%5Cunderline%7B%7E%7E%2B%2B%2B%7D%5Cunderset%7B-3%7D%7B%5Cbullet%7D%5Cunderline%7B----%7D%5Cunderset%7B15%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D+%5Cend%7Barray%7D)
Queremos que o produto do lado esquerdo de
seja negativo. Logo, o intervalo de interesse é
![\mathsf{-3<x<15.} \mathsf{-3<x<15.}](https://tex.z-dn.net/?f=%5Cmathsf%7B-3%26lt%3Bx%26lt%3B15.%7D)
Conjunto solução:![\mathsf{S=\{x\in\mathbb{R}:~-3<x<15\}} \mathsf{S=\{x\in\mathbb{R}:~-3<x<15\}}](https://tex.z-dn.net/?f=%5Cmathsf%7BS%3D%5C%7Bx%5Cin%5Cmathbb%7BR%7D%3A%7E-3%26lt%3Bx%26lt%3B15%5C%7D%7D)
ou em notação de intervalos,
![\mathsf{S=\left]-3,\,15\right[.} \mathsf{S=\left]-3,\,15\right[.}](https://tex.z-dn.net/?f=%5Cmathsf%7BS%3D%5Cleft%5D-3%2C%5C%2C15%5Cright%5B.%7D)
Bons estudos! :-)
Tags: inequação quadrática segundo grau função fórmula resolutiva báscara raíz estudo sinal solução resolver álgebra
_______________
Resolver a inequação:
Vamos encontrar as raízes do lado esquerdo:
As raízes do lado esquerdo da inequação são:
Fatorando o lado esquerdo de
Montando o quadro de sinais:
Queremos que o produto do lado esquerdo de
Conjunto solução:
ou em notação de intervalos,
Bons estudos! :-)
Tags: inequação quadrática segundo grau função fórmula resolutiva báscara raíz estudo sinal solução resolver álgebra
Perguntas interessantes
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
Artes,
1 ano atrás