A identidade: sem 2x = 2 senx e verificada se e somente se:
Soluções para a tarefa
Respondido por
2
Vamos lá .
Sendo o seno da soma sen(a+b) = sena.cosb + senb.cosa , temos :
sen(2x) = sen(x+x)
sen(2x) = senx.cosx + senx.cosx
sen(2x) = 2senx.cosx
Se sen(2x) = 2senx , então :
2senx.cosx = 2senx
cosx = 1
Identidade válida quando cosx = 1 , ou seja , para todo x = 2kπ , k ∈ Z
Sendo o seno da soma sen(a+b) = sena.cosb + senb.cosa , temos :
sen(2x) = sen(x+x)
sen(2x) = senx.cosx + senx.cosx
sen(2x) = 2senx.cosx
Se sen(2x) = 2senx , então :
2senx.cosx = 2senx
cosx = 1
Identidade válida quando cosx = 1 , ou seja , para todo x = 2kπ , k ∈ Z
gabrielramosmen:
Vlw parceiro
Perguntas interessantes