a hessiana da função f, dada por f (x,y) = e^x²+² é?
Anexos:
Soluções para a tarefa
Respondido por
13
f (x,y) = e^(x²+y²)
fx=2x*e^(x²+y²) .fxx=2e^(x²+y²) +4x²*e^(x²+y²)
fx=2x*e^(x²+y²) .fxy=2y*2x*e^(x²+y²) =4xy*e^(x²+y²)
fy=2y* e^(x²+y²) .fyx=4xy*e^(x²+y²)
fy=2y* e^(x²+y²) ..fyy=2e^(x²+y²)+4y²*e^(x²+y²)
Matriz
[ fxx fxy ]
[ fyx fyy ]
[2e^(x²+y²) +4x²*e^(x²+y²) 4xy*e^(x²+y²) ]
[ 4xy*e^(x²+y²) 2e^(x²+y²)+4y²*e^(x²+y²) ]
[(2 +4x²)*e^(x²+y²) 4xy*e^(x²+y²) ]
[4xy*e^(x²+y²) (2+4y²)*e^(x²+y²) ]
det=(2+4x²)* (2+4y²)e^(2x²+2y²) - 16x²y²* e^(2x²+2y²)
det=(4+8y²)e^(2x²+2y²) + (8x²+16x²y²)e^(2x²+2y²) - 16x²y²* e^(2x²+2y²)
det=(4+8y²)e^(2x²+2y²) + (8x²)e^(2x²+2y²)
det=(4+ 8y² + 8x²)e^(2x²+2y²) = (1+ 2y² + 2x²)*4*e^(2x²+2y²)
H(x,y) = 4*e^(2x²+2y²) * (1+ 2x² + 2y² )
fx=2x*e^(x²+y²) .fxx=2e^(x²+y²) +4x²*e^(x²+y²)
fx=2x*e^(x²+y²) .fxy=2y*2x*e^(x²+y²) =4xy*e^(x²+y²)
fy=2y* e^(x²+y²) .fyx=4xy*e^(x²+y²)
fy=2y* e^(x²+y²) ..fyy=2e^(x²+y²)+4y²*e^(x²+y²)
Matriz
[ fxx fxy ]
[ fyx fyy ]
[2e^(x²+y²) +4x²*e^(x²+y²) 4xy*e^(x²+y²) ]
[ 4xy*e^(x²+y²) 2e^(x²+y²)+4y²*e^(x²+y²) ]
[(2 +4x²)*e^(x²+y²) 4xy*e^(x²+y²) ]
[4xy*e^(x²+y²) (2+4y²)*e^(x²+y²) ]
det=(2+4x²)* (2+4y²)e^(2x²+2y²) - 16x²y²* e^(2x²+2y²)
det=(4+8y²)e^(2x²+2y²) + (8x²+16x²y²)e^(2x²+2y²) - 16x²y²* e^(2x²+2y²)
det=(4+8y²)e^(2x²+2y²) + (8x²)e^(2x²+2y²)
det=(4+ 8y² + 8x²)e^(2x²+2y²) = (1+ 2y² + 2x²)*4*e^(2x²+2y²)
H(x,y) = 4*e^(2x²+2y²) * (1+ 2x² + 2y² )
Perguntas interessantes
Matemática,
8 meses atrás
Inglês,
8 meses atrás
História,
8 meses atrás
Matemática,
1 ano atrás
Pedagogia,
1 ano atrás