Matemática, perguntado por SGLucas, 1 ano atrás

A função f: R* -> R é dada por f(x) = x + 1/x. Determine:
a) f(1/2)
b) f(x + 1), para qual x ≠ -1
c) f(a - 1), para qual a ≠ 1


Lukyo: Qual das duas é a correta: f(x) = (x+1)/x ou f(x) = x + (1/x) ?
SGLucas: f(x) = x + (1/x)

Soluções para a tarefa

Respondido por Lukyo
1
f(x)=x+\dfrac{1}{x}~~~~~(x\ne 0)

a) f\big(\frac{1}{2}\big):

f\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+\dfrac{1}{\big(\frac{1}{2}\big)}\\\\\\ f\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+2\\\\\\ f\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+\dfrac{4}{2}\\\\\\ f\left(\dfrac{1}{2}\right)=\dfrac{1+4}{2}\\\\\\ \boxed{\begin{array}{c}f\left(\dfrac{1}{2}\right)=\dfrac{5}{2} \end{array}}


b) f(x+1):

f(x+1)=(x+1)+\dfrac{1}{x+1}\\\\\\ f(x+1)=\dfrac{(x+1)^2}{x+1}+\dfrac{1}{x+1}\\\\\\ f(x+1)=\dfrac{(x+1)^2+1}{x+1}\\\\\\ f(x+1)=\dfrac{x^2+2x+1+1}{x+1}\\\\\\ \boxed{\begin{array}{c} f(x+1)=\dfrac{x^2+2x+2}{x+1} \end{array}}~~~~~~(x\ne-1)


c) f(a-1):

f(a-1)=(a-1)+\dfrac{1}{a-1}\\\\\\ f(a-1)=\dfrac{(a-1)^2}{a-1}+\dfrac{1}{a-1}\\\\\\ f(a-1)=\dfrac{(a-1)^2+1}{a-1}\\\\\\ f(a-1)=\dfrac{a^2-2a+1+1}{a-1}\\\\\\ \boxed{\begin{array}{c}f(a-1)=\dfrac{a^2-2a+2}{a-1} \end{array}}~~~~~~(a\ne 1)


SGLucas: Não entendi a A)
SGLucas: Por que fica 4/2?
Lukyo: Para fazer a soma (1/2) + 2, tenho que reduzir tudo ao mesmo denominador. Então, 2 vira 4/2..
Lukyo: É o mmc entre os denominadores para somar frações..
SGLucas: Ata, obgd
Lukyo: Por nada! :-)
Perguntas interessantes