Matemática, perguntado por ronaldlimagames, 7 meses atrás

A equação do segundo grau é um marco histórico na vida de todo estudante, conhecer a famosa expressão “ a fómula de Bháskara” é realmente a realização de um sonho. Nos estudos sobre equação do segundo o discriminante norteia a uma possível resposta para a equação. Dada equação:mx² - 2(m+2)x + m + 9 = 0, qual o valor de m para ter apenas uma raiz real?
a) 4/9
b) 2/5
c) 5/9
d) 2
e) 4/5

Soluções para a tarefa

Respondido por TheNinjaTaurus
9

M deverá ter valor 4/5.

\boxed{\rm \bf Alternativa\:correta \Rightarrow E}

Para resolver iremos utilizar a aplicação da equação do segundo grau uma inequação e a fórmula discriminante.

Equação do segundo grau

Inicialmente, aplique a propriedade distributiva:

\bf mx^{2} - 2(m+2)x + m + 9 = 0\\mx^{2} - 2mx - 4x + m + 9 \begin{cases}\textbf{a}\Rightarrow \textsf{m} \\\textbf{b}\Rightarrow \textsf{-2m- 4}\\\textbf{c}\Rightarrow \textsf{m+9}\end{cases}

Assim, encontramos o valor dos coeficientes A,B,C.

Inequação e discriminante

Representaremos a discriminante em busca da resolução de m, uma vez que trabalharemos em cima desta incógnita.

O discriminante determina se haverá duas (\bf \Delta > 0 \Rightarrow x_{1} \neq x_{2} \in \mathbb{R}\\), uma (\bf \Delta = 0 \Rightarrow x_{1} = x_{2} \in \mathbb{R}\\), ou nenhuma (\bf \Delta < 0 \Rightarrow x_{1}\:e\:x_{2} \notin \mathbb{R}\\) solução para a equação.

\bf \Delta = b^{2} - 4ac\\\Delta = (-2m-4)^{2} - 4(m \times (m+9)) = 0\\\Delta = 4m^{2} + 16m + 16 -4(m^{2} + 9m) = 0\\\Delta = 4m^{2} + 16m + 16 -4m^{2} - 36m = 0\\\Delta = -20m + 16 = 0\\\Delta = -20m = -16\:\:(Dividir\:por\:-20)\\m = \frac{16}{20}\:\:(Simplificar\:por\:4)\\\boxed{\bf m = \frac{4}{5}}

Podemos concluir assim, que o valor de M deve ser 4/5.

→ Continue estudando

⇒ https://brainly.com.br/tarefa/45240292

⇒ https://brainly.com.br/tarefa/33244436

Dúvidas? Estarei a disposição para eventuais esclarecimentos.

\textsf{\textbf{Bons\ estudos!}}\\\\\textsf{Pode\,avaliar\,a\,minha\,resposta}?\, \textsf{Isso\,me\,ajuda\,a\,melhora-las}\star\star\star\star\star\\\textsf{Ou\,marque\,como\,a\,melhor\,\textbf{se\,ela\,for\,qualificada}}\\\\\textsf{\textbf{Brainly}\,-\,Para estudantes. Por estudantes}

Anexos:
Perguntas interessantes