Matemática, perguntado por cynthyay, 1 ano atrás

A equação da reta que passa pelos centros das
circunferências x² + y² - 8x + 2y +10 = 0 e
x² + y² + 4x -16y + 60 = 0 é
Valendo 30pts

Soluções para a tarefa

Respondido por Usuário anônimo
8

Bom dia Cintia!


Solução!

Vamos pimeiramente determinar o centro das circunferencias.

Vou chamar centro1  e centro 2 indicadas por C1 e C2.


 x^{2} +y ^{2}-8x+2y+10=0\\\\\\
-2a=-8\\\\\
a= \dfrac{-8}{-2}\\\\\
a=4\\\\\\
-2b=2\\\\\
b= \dfrac{2}{-2} \\\\\
b=-1\\\\\\\
C1(4,-1)\\\\\

________________________________________________


 x^{2} +y^{2}+4x-16y+60=0\\\\\\\
-2a=4\\\\\
a= \dfrac{4}{-2}\\\\\
a=-2\\\\\\\\\\
-2b=-16\\\\\\
b= \dfrac{-16}{-2}\\\\\\
b=8\\\\\\\
C2(-2,8)

.

__________________________________________________________

Vamos agora determinar o coeficiente angular da reta que passa pelo centro das circunferencias


C1(4,-1)\\\\\\\ C2(-2,8)\\\\\\ m= \dfrac{C2y-C1y}{C2x-C1x}\\\\\\ m= \dfrac{8+1}{-2-4}\\\\\\ m= \dfrac{9}{-6}\\\\\\ m= -\dfrac{3}{2}


___________________________________________________

Equação da reta!


C1(4,-1)\\\\\\\
m= -\dfrac{3}{2} \\\\\\\
y-yC1=m(x-xC1)\\\\\\\\\
y+1= -\frac{3}{2}(x-4)\\\\\\
y+1= -\frac{3x}{2}+ \frac{12}{2} \\\\\\\\
y+1= -\frac{3x+12}{2} \\\\\\\\
2y+2=-3x+12\\\\\\
3x+2y+2-12=0\\\\\\\


\boxed{3x+2y-10=0~~\Rightarrow~~Eq:Forma~~geral}


\boxed{y= -\frac{3x}{2}-5~~ \Rightarrow~~Eq:Forma~~reduzida}

Veja qual das duas formas estão no gabarito!


Bom dia!

Bons estudos!



Perguntas interessantes