Matemática, perguntado por gabizinramos, 6 meses atrás

A equação da reta que contem os pontos (1,1) e (2,3)

Soluções para a tarefa

Respondido por cristinasennsenn
0

Resposta. Portanto, as equações reduzidas da reta que passam pelos pontos (1,3) e (2,1) são, respectivamente, y=-2x+7 e y=-2x+5.

Explicação passo-a-passo:

Respondido por JOAODIASSIM
1

Resposta:

y = 2x - 1.

Explicação passo-a-passo:

O coeficiente angular da reta nos pontos (1,1) e (2,3):

m = (y₂ - y₁)/(x₂ - x₁)

m = (3 - 1)/(2 - 1)

m = 2/1

m = 2.

A equação da reta com o coeficiente angular da reta e o ponto (1,1):

y - y₁ = m(x - x₁)

y - 1 = 2(x - 1)

y - 1 = 2x - 2

y = 2x - 2 + 1

y = 2x - 1.

Ou:

Também poderia usar o ponto (2,3):

y - y₁ = m(x - x₁)

y - 3 = 2(x - 2)

y - 3 = 2x - 4

y = 2x - 4 + 3

y = 2x - 1.

Perguntas interessantes