Matemática, perguntado por douglassilvalipbk7cc, 1 ano atrás

A equação da reta que contem o ponto P 3,5 e é perpendicular à reta 3x+y=6 é

Soluções para a tarefa

Respondido por bruno1numeriano
4

Boa tarde, esse é boa. Pela a geometria, duas retas são paralelas quando o angulo entre elas formam 90º. Na geometria analítica, duas retas são paralelas quando o produto dos coeficientes angular das duas retas é igual -1.

Sabemos que a equação da reta é dada por Y=aX+b, onde a é o coeficiente agular e b coeficiente linear.


Então temos:

Reta 1.: Y= -3X+6 ( coeficiente angular -3)

Reta 2.: Y2=a2 + b ( onde a coeficiente angulas da reta 2).


Fazendo, a1.a2=-1 e substituindo os valores a1=-3.

Temos -3.a2=-1.....> a2=-1/-3.....a2=1/3.


Então substituindo a2 e o ponto (3,5) na equação da reta teremos:

Y2=a2X+b....> 5=1/3.(3)+b....>5=3/3+b...>5=1+b...> b=4.


Com todos identificado temos a equação da reta 2: Y=1/3.X + 4



Perguntas interessantes