A distância entre dois pontos P(-5, 4) e Q(-2, 7)
Soluções para a tarefa
Respondido por
12
Olá Meirie,
usando a relação de distância entre dois pontos, onde:
![\large\begin{cases}x_o=-5\\
y_o=4\\
x=-2\\
y=7\end{cases} \large\begin{cases}x_o=-5\\
y_o=4\\
x=-2\\
y=7\end{cases}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Bcases%7Dx_o%3D-5%5C%5C%0Ay_o%3D4%5C%5C%0Ax%3D-2%5C%5C%0Ay%3D7%5Cend%7Bcases%7D)
Podemos fazer:
![d_{ \alpha \beta }= \sqrt{(x-x_o)^2+(y-y_o)^2}\\\\
d_{PQ}= \sqrt{(-2-(-5))^2+(7-4)^2}\\
d_{PQ}= \sqrt{(-2+5)^2+3^2}\\
d_{PQ}= \sqrt{3^2+9}\\
d_{PQ}= \sqrt{9+9}\\
d_{PQ}= \sqrt{18}\\
d_{PQ}= \sqrt{3^2\cdot2}\\
d_{PQ}= \sqrt{9}\cdot \sqrt{2}\\\\
\huge\boxed{\boxed{d_{PQ}=3 \sqrt{2}}} d_{ \alpha \beta }= \sqrt{(x-x_o)^2+(y-y_o)^2}\\\\
d_{PQ}= \sqrt{(-2-(-5))^2+(7-4)^2}\\
d_{PQ}= \sqrt{(-2+5)^2+3^2}\\
d_{PQ}= \sqrt{3^2+9}\\
d_{PQ}= \sqrt{9+9}\\
d_{PQ}= \sqrt{18}\\
d_{PQ}= \sqrt{3^2\cdot2}\\
d_{PQ}= \sqrt{9}\cdot \sqrt{2}\\\\
\huge\boxed{\boxed{d_{PQ}=3 \sqrt{2}}}](https://tex.z-dn.net/?f=d_%7B+%5Calpha++%5Cbeta+%7D%3D+%5Csqrt%7B%28x-x_o%29%5E2%2B%28y-y_o%29%5E2%7D%5C%5C%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B%28-2-%28-5%29%29%5E2%2B%287-4%29%5E2%7D%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B%28-2%2B5%29%5E2%2B3%5E2%7D%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B3%5E2%2B9%7D%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B9%2B9%7D%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B18%7D%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B3%5E2%5Ccdot2%7D%5C%5C%0Ad_%7BPQ%7D%3D+%5Csqrt%7B9%7D%5Ccdot+%5Csqrt%7B2%7D%5C%5C%5C%5C%0A%5Chuge%5Cboxed%7B%5Cboxed%7Bd_%7BPQ%7D%3D3+%5Csqrt%7B2%7D%7D%7D++++++++++)
Tenha ótimos estudos =))
usando a relação de distância entre dois pontos, onde:
Podemos fazer:
Tenha ótimos estudos =))
Perguntas interessantes