A diferença entre o dobro do quadrado de um número positivo e o seu triplo é 35. Qual é esse número?
Soluções para a tarefa
Respondido por
6
2x²-3x=35
2x²-3x-35=0
Aplicando Bhaskara
+
x = -(-3)- V(-3)²-4.2.(-35)
------------------------------
4
+
x = 3 - V289
-------------
4
x1 = -3,5 x2 = 5
Número positivo: 5
RESPOSTA: A diferença é 5
2x²-3x-35=0
Aplicando Bhaskara
+
x = -(-3)- V(-3)²-4.2.(-35)
------------------------------
4
+
x = 3 - V289
-------------
4
x1 = -3,5 x2 = 5
Número positivo: 5
RESPOSTA: A diferença é 5
Respondido por
13
Montando a equação:
2x² - 3x = 35
Resolvendo:
2x² - 3x - 35 = 0
Coeficientes: a = 2, b = -3 e c = -35
Δ = b² - 4ac
Δ = (-3)² - 4 · 2 · (-35)
Δ = 9 + 280
Δ = 289
-b ± √Δ
x = --------------
2a
-(-3) ± √289
x = ---------------------
2 . 2
3 ± 17
x = -----------
4
Como a questão pede um número positivo então o resultado do x" não é considerado como resposta, então o número é 5.
Espero ter ajudado.
Bons estudos! : )
2x² - 3x = 35
Resolvendo:
2x² - 3x - 35 = 0
Coeficientes: a = 2, b = -3 e c = -35
Δ = b² - 4ac
Δ = (-3)² - 4 · 2 · (-35)
Δ = 9 + 280
Δ = 289
-b ± √Δ
x = --------------
2a
-(-3) ± √289
x = ---------------------
2 . 2
3 ± 17
x = -----------
4
Como a questão pede um número positivo então o resultado do x" não é considerado como resposta, então o número é 5.
Espero ter ajudado.
Bons estudos! : )
Perguntas interessantes
Português,
9 meses atrás
História,
9 meses atrás
Matemática,
9 meses atrás
Biologia,
1 ano atrás
Administração,
1 ano atrás