Matemática, perguntado por albuquerqueali52661, 5 meses atrás

A diferença entre o ângulo interno de um polígono regular de n lados com o ângulo externo de um polígono regular de 2n lados é igual a

Soluções para a tarefa

Respondido por jalves26
0

A diferença entre o ângulo interno e o ângulo externo descritos é igual a:

(n - 3)·180°

        n

Ângulo interno e ângulo externo de polígono

A medida do ângulo interno de um polígono regular de n lados é dada por:

ai = (n - 2)·180°

             n

A soma dos ângulos externos de um polígono regular sempre é 360°. Assim, a medida do ângulo externo de um polígono de 2n lados será dada por:

ae = 360°

         2n

ae = 180°

         n

Queremos saber a diferença entre as medidas desses dois ângulos. Logo:

ai - ae =

(n - 2)·180° - 180° =

         n           n

180°n - 360° - 180° =

             n

180°n - 540° =

        n

180°·(n - 3) ou (n - 3)·180°

      n                       n

Mais sobre ângulos internos de um polígono em:

https://brainly.com.br/tarefa/31649306

#SPJ4

Perguntas interessantes