Matemática, perguntado por odiooooooo, 6 meses atrás

a) Determine o valor de k.
b) Calcule o valor de g(-3) • g(-2) • g(1).

Anexos:

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{g(x) = \left(\dfrac{1}{k}\right)^x}

\mathsf{D_Y = g(-4) = \left(\dfrac{1}{k}\right)^{-4} = k^4}

\mathsf{C_Y = g(-2) = \left(\dfrac{1}{k}\right)^{-2} = k^2}

\mathsf{S = \dfrac{(B + b)\:.\:h}{2}}

\mathsf{6 = \dfrac{(k^4 + k^2)\:.\:\not2}{\not2}}

\mathsf{k^4 + k^2 - 6 = 0}

\mathsf{y = k^2}

\mathsf{y^2 + y - 6 = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = 1^2 - 4.1.(-6)}

\mathsf{\Delta = 1 + 24}

\mathsf{\Delta = 25}

\mathsf{y = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{-1 \pm \sqrt{25}}{2} \rightarrow \begin{cases}\mathsf{y' = \dfrac{-1 + 5}{2} = \dfrac{4}{2} = 2}\\\\\mathsf{y'' = \dfrac{-1 - 5}{2} = -\dfrac{6}{2} = -3}\end{cases}}

\boxed{\boxed{\mathsf{k = \sqrt{2}}}}

\mathsf{g(-3)\:.\:g(-2)\:.\:(g(-1) = \left(\dfrac{1}{\sqrt{2}}\right)^{-3}\:.\:\left(\dfrac{1}{\sqrt{2}}\right)^{-2}\:.\:\left(\dfrac{1}{\sqrt{2}}\right)^{-1}}

\mathsf{g(-3)\:.\:g(-2)\:.\:(g(-1) = (\sqrt{2})^{3}\:.\:(\sqrt{2})^{2}\:.\:(\sqrt{2})^{1}}

\mathsf{g(-3)\:.\:g(-2)\:.\:(g(-1) = (\sqrt{2})^{6}}

\boxed{\boxed{\mathsf{g(-3)\:.\:g(-2)\:.\:(g(-1) = 8}}}

Perguntas interessantes