Matemática, perguntado por volmeijunior, 8 meses atrás

A determinação do centro de massa no caso de coordenadas esféricas é um procedimento bastante semelhante ao que se faz para coordenadas cilíndricas.

Considere o sólido delimitado pela esfera x squared plus y squared plus z squared equals 16, inferiormente pelo plano xy e superiormente pelo cone empty set equals straight pi over 4. Suponha que a função densidade seja rho left parenthesis x comma y comma z right parenthesis equals square root of x squared plus y squared plus z squared end root equals r. Determine a coordenada z do centro de massa.

Escolha uma:
a. fraction numerator 32 over denominator 5 left parenthesis 3 minus square root of 2 right parenthesis end fraction
b. fraction numerator 16 over denominator 3 left parenthesis 3 minus square root of 3 right parenthesis end fraction
c. fraction numerator 5 over denominator 16 left parenthesis 3 minus square root of 2 right parenthesis end fraction
d. fraction numerator 64 over denominator 5 left parenthesis 2 minus square root of 2 right parenthesis end fraction
e. fraction numerator 5 over denominator 16 left parenthesis 2 minus square root of 3 right parenthesis end fraction

Anexos:

Soluções para a tarefa

Respondido por abnermoor
2

Resposta:

Letra d.

Explicação passo-a-passo:

Corrigido pelo AVA

Perguntas interessantes