A derivada dessa função é?
1/x^2 + e^-x + sec.^2 X
Soluções para a tarefa
Respondido por
1
Regra do quociente para derivar 1/x², e regra da cadeia para derivar o resto.
![y= \frac{1}{x^2} + e^{-x} +sec^2x \\ y'= \frac{x^2*0-1*2x}{(x^2)^2} +e^{-x}*(-1)+2sec(x)sec(x)tg(x) \\ y'= \frac{-2x}{x^4}- e^{-x}+2sec^2(x)tg(x) \\ y'=- \frac{2}{x^3}-e^{-x}+2sec^2(x)tg(x) y= \frac{1}{x^2} + e^{-x} +sec^2x \\ y'= \frac{x^2*0-1*2x}{(x^2)^2} +e^{-x}*(-1)+2sec(x)sec(x)tg(x) \\ y'= \frac{-2x}{x^4}- e^{-x}+2sec^2(x)tg(x) \\ y'=- \frac{2}{x^3}-e^{-x}+2sec^2(x)tg(x)](https://tex.z-dn.net/?f=y%3D+%5Cfrac%7B1%7D%7Bx%5E2%7D+%2B+e%5E%7B-x%7D+%2Bsec%5E2x+%5C%5C+y%27%3D+%5Cfrac%7Bx%5E2%2A0-1%2A2x%7D%7B%28x%5E2%29%5E2%7D+%2Be%5E%7B-x%7D%2A%28-1%29%2B2sec%28x%29sec%28x%29tg%28x%29+%5C%5C+y%27%3D+%5Cfrac%7B-2x%7D%7Bx%5E4%7D-+e%5E%7B-x%7D%2B2sec%5E2%28x%29tg%28x%29+%5C%5C+y%27%3D-+%5Cfrac%7B2%7D%7Bx%5E3%7D-e%5E%7B-x%7D%2B2sec%5E2%28x%29tg%28x%29)
*= vezes
Mostrando a regra da cadeia em e^-x:
Seja f(x)=e^x e g(x)=-x f(g(x))'=f'(g(x))*g'(x), então:
![f(x)=e^x \\ g(x)=-x \\ f(g(x))'=f'(g(x))*g'(x) \\ f(g(x))'= e^{-x}*(-1) \\ f(g(x))'=-e^{-x} f(x)=e^x \\ g(x)=-x \\ f(g(x))'=f'(g(x))*g'(x) \\ f(g(x))'= e^{-x}*(-1) \\ f(g(x))'=-e^{-x}](https://tex.z-dn.net/?f=f%28x%29%3De%5Ex+%5C%5C+g%28x%29%3D-x+%5C%5C+f%28g%28x%29%29%27%3Df%27%28g%28x%29%29%2Ag%27%28x%29+%5C%5C+f%28g%28x%29%29%27%3D+e%5E%7B-x%7D%2A%28-1%29+%5C%5C+f%28g%28x%29%29%27%3D-e%5E%7B-x%7D)
Procedimento semelhante ocorre com sec^2 (x), chame f(x)=x², e g(x)=sec(x).
Depois lembra que a derivada de sec(x)=sec(x)tg(x) e pronto!
*= vezes
Mostrando a regra da cadeia em e^-x:
Seja f(x)=e^x e g(x)=-x f(g(x))'=f'(g(x))*g'(x), então:
Procedimento semelhante ocorre com sec^2 (x), chame f(x)=x², e g(x)=sec(x).
Depois lembra que a derivada de sec(x)=sec(x)tg(x) e pronto!
Perguntas interessantes