Matemática, perguntado por rodrigocm, 9 meses atrás

A derivada de g(x)=4cos(√x) é:

Soluções para a tarefa

Respondido por Nerd1990
0

\sf \: g(x) =  4  \cos \Big(\sqrt{x}\Big)  \\  \\ \sf \: g'(x) =  \frac{d}{dx} \Bigg(4 \cos\Big( \sqrt{x} \Big) \Bigg) \\  \\ \sf \: g' (x) = 4 \times  \frac{d}{dx} \Bigg( \cos\Big( \sqrt{x}\Big) \Bigg) \\  \\ \sf \: g'(x) = 4 \times  \frac{d}{dg} \Big( \cos(g) \Big) \times  \frac{d}{dx} \Big( \sqrt{x} \Big) \\  \\ \sf \: g'(x)  = 4 \times \Bigg( \sin(g)  \times  \frac{d}{dx}\Big( \sqrt{x} \Big) \Bigg) \\  \\ \sf \: g'(x) = 4 \times \Bigg( -  \sin\Big( \sqrt{x} \Big) \times    \frac{1}{2 \sqrt{x} } \Bigg) \\  \\ \sf \: 4 \times \Bigg( -  \frac{ \sin\Big( \sqrt{x}\Big)  }{2 \sqrt{x} } \Bigg) \\  \\ \sf \:  - 4 \times  \frac{ \sin\Big( \sqrt{x} \Big) }{2 \sqrt{x} }  \\  \\ \sf \:  - 2 \times  \frac{ \sin\Big( \sqrt{x} \Big) }{ \sqrt{x} }  \\  \\ \boxed{\sf \:  -  \frac{2 \sin\Big( \sqrt{x} \Big) }{ \sqrt{x} }}

Att: Nerd1990

Perguntas interessantes