A derivada de (2t+1)^[(t^2)-1]
Soluções para a tarefa
Respondido por
2
f=(2t+1)^[t²-1]
ln f= ln {(2t+1)^[t²-1]}
f=e^{ln (2t+1)^[t²-1]}
f=e ^{[t²-1] ln (2t+1)}
f'={[t²-1] ln (2t+1)}' * e ^{[t²-1] ln (2t+1)}
f'={[t²-1]' ln (2t+1)+[t²-1] ln' (2t+1)} * e ^{[t²-1] ln (2t+1)}
f'={2t*ln (2t+1)+[t²-1] *2/(2t+1)} * e ^[t²-1] ln (2t+1)
f'={2t*ln (2t+1)+2[t²-1] /(2t+1)} * e ^[t²-1] ln (2t+1)
ln f= ln {(2t+1)^[t²-1]}
f=e^{ln (2t+1)^[t²-1]}
f=e ^{[t²-1] ln (2t+1)}
f'={[t²-1] ln (2t+1)}' * e ^{[t²-1] ln (2t+1)}
f'={[t²-1]' ln (2t+1)+[t²-1] ln' (2t+1)} * e ^{[t²-1] ln (2t+1)}
f'={2t*ln (2t+1)+[t²-1] *2/(2t+1)} * e ^[t²-1] ln (2t+1)
f'={2t*ln (2t+1)+2[t²-1] /(2t+1)} * e ^[t²-1] ln (2t+1)
Perguntas interessantes