A base de um retangulo excede a sua altura em 4cm. Se aumentassemos 5cm em cada lado desse retangulo, sua area ficaria igual a 165cm2. As dimensoes do retangulo em cm, sao:
Soluções para a tarefa
Respondido por
1
Sabemos que:
B1 = H1 + 4
H1 = H1
Aumentando as dimensões:
B2 = H1 + 4 + 5 = H1 + 9
H2 = H1 + 5
A = B.H
165 = (H1 + 9).(H1 + 5)
165 = H1² + 5H1 + 9H1 + 45
165 = H1² + 14H1 + 45
0 = H1² + 14H1 + 45 - 165
0 = H1² + 14H1 - 120
∆ = b² - 4ac
∆ = (14)² - 4(1)(-120)
∆ = 196 + 480
∆ = 676
√∆ = √676 = 26
H1' = (-b + √∆)/2a
H1' = (-14 + 26)/2
H1' = 12/2
H1' = 6 cm
H1'' será um valor negativo, o que não se aplica à distâncias. Logo, o valor de H1 é 6 cm.
Voltando ao primeiro retângulo:
H1 = H1
H1 = 6 cm
B1 = H1 + 4
B1 = 6 + 4 = 10 cm
B1 = H1 + 4
H1 = H1
Aumentando as dimensões:
B2 = H1 + 4 + 5 = H1 + 9
H2 = H1 + 5
A = B.H
165 = (H1 + 9).(H1 + 5)
165 = H1² + 5H1 + 9H1 + 45
165 = H1² + 14H1 + 45
0 = H1² + 14H1 + 45 - 165
0 = H1² + 14H1 - 120
∆ = b² - 4ac
∆ = (14)² - 4(1)(-120)
∆ = 196 + 480
∆ = 676
√∆ = √676 = 26
H1' = (-b + √∆)/2a
H1' = (-14 + 26)/2
H1' = 12/2
H1' = 6 cm
H1'' será um valor negativo, o que não se aplica à distâncias. Logo, o valor de H1 é 6 cm.
Voltando ao primeiro retângulo:
H1 = H1
H1 = 6 cm
B1 = H1 + 4
B1 = 6 + 4 = 10 cm
macpbh040716:
Excelente...muito obrigada!!!!
Perguntas interessantes
Artes,
10 meses atrás
Inglês,
10 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás