A área lateral de um cone equilátero é 18 pi cm2. Determine:
a) Área da Seção Meridiana
b) Área Total
c) Volume do Cone
Soluções para a tarefa
Respondido por
3
AL = 18 pi cm²
Vamos achar o raio jogando na fórmula da área lateral
AL = 2 pi r²
18 = 2r²
9 = r²
r = √9
r = 3
a) A seção meridiana de um cone equilátero forma um triângulo equilátero de base 2r
Jogando na fórmula da área do triângulo equilátero
A = L² √3 / 4
A = 6²√3 / 4
A = 36√3 / 4
A = 12√3 cm²
b) AT = 3 pi r²
AT = 3 pi 3²
AT = 3 . 9
AT = 27 pi cm²
c) V = ( pi r³ √3 ) / 3
V = ( pi 3³ √3 ) / 3
V = ( 27√3 ) / 3
V = 9√3 pi cm³
Vamos achar o raio jogando na fórmula da área lateral
AL = 2 pi r²
18 = 2r²
9 = r²
r = √9
r = 3
a) A seção meridiana de um cone equilátero forma um triângulo equilátero de base 2r
Jogando na fórmula da área do triângulo equilátero
A = L² √3 / 4
A = 6²√3 / 4
A = 36√3 / 4
A = 12√3 cm²
b) AT = 3 pi r²
AT = 3 pi 3²
AT = 3 . 9
AT = 27 pi cm²
c) V = ( pi r³ √3 ) / 3
V = ( pi 3³ √3 ) / 3
V = ( 27√3 ) / 3
V = 9√3 pi cm³
Perguntas interessantes
História,
8 meses atrás
ENEM,
8 meses atrás
Português,
8 meses atrás
Ed. Técnica,
1 ano atrás
Psicologia,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás