Matemática, perguntado por Kumo10, 11 meses atrás

A área do quadrilátero da na figura ao lado é: Escolha uma:

a. 30 u. m. a.

b. 19 u. m. a.

c. 25 u. m. a.

d. 16 u. m. a.

e. 12 u. m. a.

Anexos:

Soluções para a tarefa

Respondido por Nefertitii
6

Para encontrar a área desse quadrilátero, mostrarei pra você um macete que irá acelerar os seus cálculos de áreas na Geometria Analítica.

  • Primeiro vamos identificar os pontos A, B, C e D.

A(1,1) \:  \:   B(6,1) \:  \: C(7,5) \:  \: D(1,4)

Agora você dispõe esses pontos um abaixo do outro, na ordem de A para D ou de D para A.

A  \:  \:  \:  \:  \: (1,1)  \\    B \:  \:  \:  \: (6,1)  \\ C \:  \:  \:  \:  (7,5)  \\  D \:  \:  \:  \: (1,4)

Agora você repete o primeiro ponto que você listou, ou seja, no meu caso será o ponto A:

A  \:  \:  \:  \:  \: (1,1)  \\    B \:  \:  \:  \: (6,1)  \\ C \:  \:  \:  \:  (7,5)  \\  D \:  \:  \:  \: (1,4) \\ A \:  \:  \:  \: (1,1)

Tendo feito isso, você calcula uma espécie de "determinante" a partir dessa torre de pontos que você fez.

  • Lembrando que o determinante é diagonal principal menos a secundária:

A  \:  \:  \:  \:  \: (1,1)  \\    B \:  \:  \:  \: (6,1)  \\ C \:  \:  \:  \:  (7,5)  \\  D \:  \:  \:  \: (1,4) \\ A \:  \:  \:  \: (1,1) \\  \\ D = 1.1 + 6.5 + 7.4 + 1.1 - (6.1 + 7.1 + 1.5 + 1.4) \\ D =  60 - 22 \\ D = 38

Agora é só jogar esse dado na fórmula da área de um triângulo:

A =  \frac{ | D| }{2}  \\  \\ A =  \frac{38}{2}  \\  \\ \boxed{ A = 19 \: u.a}

Espero ter ajudado

Perguntas interessantes