Matemática, perguntado por babarabrito10, 8 meses atrás

A altura e o raio da base de um cone circular reto medem 4 cm e 15 cm, respectivamente. Aumenta-se em x a altura e diminui-se em x o raio da base desse cone, de uma mesma medida, e x ≠ 0 , para obter-se outro cone circular reto, de mesmo volume que o original. Determine x, em cm.



x = 4 cm

x = 2 cm

x = 5 cm

x = 1 cm

x = 3 cm

Soluções para a tarefa

Respondido por bellaleite1008
1

Resposta:

x = 5 cm

Explicação passo-a-passo:

V = (π.r².h)/3 = (π.15².4)/3 = (π.225.4)/3 = 300.π

V`=300.π = (π.r`².h`)/3 = [π.(15 - x)²(4 + x)]/3  

900π = π(225 - 30x + x²)(4 + x)

900 = 900 + 225x - 120x - 30x² + 4x² + x³

x³ - 26x² + 105x = 0

x³ - 26x² + 105x = 0

x(x² - 26x + 105) = 0

x= 0

x² - 26x + 105 = 0

D = 676 - 420 = 256 → √256 = +- 16

x = [26 +- 16]/2 = 21 ou 5

se x = 21 → r`= 15 - x = 15 - 21 = - 6 (absurdo)

se x = 5 → r`= 15 - x = 15 - 5 = 10 e  

h`= 4 + x = 4 + 5 = 9

x = 5cm

Perguntas interessantes