A alternativa que corresponde à solução de
∫ 5xe ^(3x) dx
é:
Anexos:
Soluções para a tarefa
Respondido por
1
Resposta:
∫ 5x * e^(3x) dx
fazendo por partes
u =x ==> du=dx e^(3x) dx
dv = e^(3x) dx ==>∫ dv =∫ e^(3x) dx ==>v= (1/3)* e^(3x)
∫ x * e^(3x) dx = (x/3)* e^(3x) - ∫ (1/3)* e^(3x) dx
∫ x * e^(3x) dx = (x/3)* e^(3x) -(1/3)* ∫ e^(3x) dx
∫ x * e^(3x) dx = (x/3)* e^(3x) -(1/9)* e^(3x) + c
∫ 5x * e^(3x) dx = (5x/3)* e^(3x) -(5/9)* e^(3x) + c
∫ 5x * e^(3x) dx = (5/9)* 3x*e^(3x) -(5/9)* e^(3x) + c
∫ 5x * e^(3x) dx = (5/9)*e^(3x) * (3x-1) + c
∫ 5x * e^(3x) dx = (5/3)*e^(3x) * (x-1/3) + c
Perguntas interessantes
Ed. Física,
6 meses atrás
Física,
6 meses atrás
Administração,
8 meses atrás
Química,
8 meses atrás
Física,
11 meses atrás
Biologia,
11 meses atrás