Matemática, perguntado por Stefanithais, 1 ano atrás

A abscissa de um ponto P é -6 e sua distância ao ponto q (1,3) é √74.Determine a ordenada do ponto

Soluções para a tarefa

Respondido por Lukyo
10
Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador:  https://brainly.com.br/tarefa/10488243

——————————

São dados os pontos

     •   \mathsf{P(-6,\,y_P);~~Q(1,\,3)}


e a distância entre eles:

     •   \mathsf{d_{PQ}=\sqrt{74}}


de onde segue que

     \mathsf{d^2_{PQ}=74}


Pela fórmula da distância entre dois pontos, devemos ter

     \mathsf{d^2_{PQ}=(x_Q-x_P)^2+(y_Q-y_P)^2}\\\\ \mathsf{74=(1-(-6))^2+(3-y_P)^2}


Resolvendo a equação para  \mahtsf{y_P}, temos:

     \mathsf{74=(1+6)^2+(3-y_P)^2}\\\\ \mathsf{74=(7)^2+(3-y_P)^2}\\\\ \mathsf{74=49+(3-y_P)^2}\\\\ \mathsf{(3-y_P)^2=74-49}\\\\ \mathsf{(3-y_P)^2=25}

     \mathsf{3-y_P=\pm\,\sqrt{25}}\\\\ \mathsf{3-y_P=\pm\,5}\\\\ \mathsf{y_P=3\mp 5}

     \begin{array}{rcl} \!\!\!\mathsf{y_P=3-5}&~\textsf{ ou }~&\mathsf{y_P=3+5}\\\\ \!\!\!\mathsf{y_P=-2}&~\textsf{ ou }~&\mathsf{y_P=8}\qquad\quad\checkmark \end{array}


A ordenada do ponto P é  – 2  ou  8.


Bons estudos! :-)

Respondido por solkarped
4

✅ Após resolver os cálculos, concluímos que os possíveis valores das ordenadas para o ponto "P" são, respectivamente:

            \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf y' = -2\:\:\:e\:\:\:y'' = 8\:\:\:}}\end{gathered}$}

Analisando o enunciado, podemos montar os seguintes dados:

                          \Large\begin{cases}d_{\overline{PQ}} = \sqrt{74}\\P = (-6,\,y)\\ Q = (1, 3)\end{cases}

Sabendo que a distância entre os pontos "P" e "Q" pode ser desenvolvida a partir da seguinte estratégia:

\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}           \Large\displaystyle\text{$\begin{gathered} d_{\overline{PQ}} = \sqrt{(x_{Q} - x_{P})^{2} + (y_{Q} - y_{P})^{2}}\end{gathered}$}

Para facilitar os cálculos podemos inverter os membros da equação "I". Então, temos:

\Large\displaystyle\text{$\begin{gathered} \bf II\end{gathered}$}        \Large\displaystyle\text{$\begin{gathered}  \sqrt{(x_{Q} - x_{P})^{2} + (y_{Q} - y_{P})^{2}} = d_{\overline{PQ}}\end{gathered}$}

Substituindo os dados na equação "II", temos:

             \Large\displaystyle\text{$\begin{gathered} \sqrt{(1 - (-6))^{2} + (3 - y)^{2}} = \sqrt{74}\end{gathered}$}

        \Large\displaystyle\text{$\begin{gathered} (\sqrt[\!\diagup\!\!]{(1 - (-6))^{2} + (3 - y)^{2}})^{\!\diagup\!\!\!\!2} = (\sqrt[\!\diagup]{74})^{\!\diagup\!\!\!\!2}\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered} (1 + 6)^{2} + (3 - y)^{2} = 74\end{gathered}$}

                                        \Large\displaystyle\text{$\begin{gathered} 7^{2} + (3 - y)^{2} = 74\end{gathered}$}

                                \Large\displaystyle\text{$\begin{gathered} 49 + 9 - 6y + y^{2} = 74\end{gathered}$}

                     \Large\displaystyle\text{$\begin{gathered} y^{2} - 6y + 49 + 9 - 74 = 0\end{gathered}$}

                                         \Large\displaystyle\text{$\begin{gathered} y^{2} - 6y - 16 = 0\end{gathered}$}

Chegando na equação do segundo grau, devemos calcular as raízes. Então, temos:

     \Large\displaystyle\text{$\begin{gathered} y = \frac{-(-6)\pm\sqrt{(-6)^{2} - 4\cdot1\cdot(-16)}}{2\cdot1}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \frac{6\pm\sqrt{36 + 64}}{2}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \frac{6\pm\sqrt{100}}{2}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \frac{6\pm10}{2}\end{gathered}$}

          \Large\displaystyle\text{$\begin{gathered} = 3\pm5\end{gathered}$}

Obtendo as raízes:

     \Large\begin{cases} y' = 3 - 5 = -2\\y'' = 3 + 5 = 8\end{cases}

Portanto, as ordenadas do ponto P pertencem ao seguinte conjunto solução:

            \Large\displaystyle\text{$\begin{gathered} S = \{-2,\,8\}\end{gathered}$}

✅ Desta forma, as possíveis coordenadas do ponto P são:

      \Large\displaystyle\text{$\begin{gathered} P' = (-6,\,-2)\:\:\:e\:\:\:P'' = (-6,\,8)\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/51968437
  2. https://brainly.com.br/tarefa/51999208
  3. https://brainly.com.br/tarefa/52052597
  4. https://brainly.com.br/tarefa/52080832
  5. https://brainly.com.br/tarefa/52183511
  6. https://brainly.com.br/tarefa/52183818
  7. https://brainly.com.br/tarefa/52224850
  8. https://brainly.com.br/tarefa/52228457
  9. https://brainly.com.br/tarefa/23838377
  10. https://brainly.com.br/tarefa/52812637
  11. https://brainly.com.br/tarefa/8219545
  12. https://brainly.com.br/tarefa/13847522

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas interessantes