a) 3x² - 2x - 6 =0
b) y² - 7y +6 =0
c) 16x² + 8x +1 =0
d) 5x² -4x + 2 =0
Soluções para a tarefa
a) 3x² - 2x - 6 = 0
x = [ ( 2 ± √(2² - 4×3×(-6) ) ÷ (2 × 3) ] ⇔
⇔ x = [ ( 2 ± √(4 + 72) ) ÷ 6 ] ⇔
⇔ x = [ ( 2 ± √76 ) ÷ 6 ] ⇔
⇔ x = [ ( 2 - √76 ) ÷ 6 ] ∨ x = [ ( 2 + √76 ) ÷ 6 ] ⇔
⇔ x = [ ( 2 - 2√19 ) ÷ 6 ] ∨ x = [ ( 2 + 2√19 ) ÷ 6 ] ⇔
⇔ x = [ ( 1 - √19 ) ÷ 3 ] ∨ x = [ ( 1 + √19 ) ÷ 3 ]
x ∈ { 1 - √19 / 3 ; 1 + √19 / 3 }
b) y² - 7y +6 = 0
y = [ ( 7 ± √(7² - 4×1×6 ) ÷ (2 × 1) ] ⇔
⇔ y = [ ( 7 ± √(49 - 24) ) ÷ 2 ] ⇔
⇔ y = [ ( 7 ± √25 ) ÷ 2 ] ⇔
⇔ y = [ ( 7 ± 5 ) ÷ 2 ] ⇔
⇔ y = [ ( 7 - 5 ) ÷ 2 ] ∨ y = [ ( 7 + 5 ) ÷ 2 ] ⇔
⇔ y = 2/2 ∨ y = 12/2 ⇔
⇔ y = 1 ∨ y = 6
x ∈ { 1 ; 6 }
c) 16x² + 8x +1 = 0
x = [ ( -8 ± √((-8)² - 4×16×1 ) ÷ (2 × 16) ] ⇔
⇔ x = [ ( -8 ± √(64 - 64) ) ÷ 32 ] ⇔
⇔ x = [ ( -8 ± √0 ) ÷ 32 ] ⇔
⇔ x = [ ( -8 ± 0 ) ÷ 32 ] ⇔
⇔ x = -8/32 ∨ x = -8/32 ⇔
⇔ x = -1/4 ∨ x = -1/4
x ∈ { -1/4 }
d) 5x² -4x + 2 = 0
x = [ ( 4 ± √((-4)² - 4×5×2 ) ÷ (2 × 5) ] ⇔
⇔ x = [ ( 4 ± √(16 - 40) ) ÷ 10 ] ⇔
⇔ x = [ ( 4 ± √(-24) ) ÷ 10 ] (Impossível)
x ∈ ∅