a= -3/2, b= 1/3 e c = 1/3
me ajude .. responda aí precisa dessa resposta
Usuário anônimo:
O que é pra fazer ???
Soluções para a tarefa
Respondido por
4
Kassandra
Nada difícil. Só substituir os valores e efetuar operações indicadas
Veja
![b^2 - 4.a.c \\ \\ =( \frac{1}{3})^2 - 4.( -\frac{3}{2}).( \frac{1}{3)} \\ \\ = \frac{1}{9} +2 \\ \\ = \frac{1}{9}+ \frac{18}{9} b^2 - 4.a.c \\ \\ =( \frac{1}{3})^2 - 4.( -\frac{3}{2}).( \frac{1}{3)} \\ \\ = \frac{1}{9} +2 \\ \\ = \frac{1}{9}+ \frac{18}{9}](https://tex.z-dn.net/?f=b%5E2+-+4.a.c+%5C%5C++%5C%5C+%3D%28+%5Cfrac%7B1%7D%7B3%7D%29%5E2+-+4.%28+-%5Cfrac%7B3%7D%7B2%7D%29.%28+%5Cfrac%7B1%7D%7B3%29%7D++++%5C%5C++%5C%5C+%3D+%5Cfrac%7B1%7D%7B9%7D+%2B2+%5C%5C++%5C%5C+%3D+%5Cfrac%7B1%7D%7B9%7D%2B++%5Cfrac%7B18%7D%7B9%7D+)
RESULTADO FINAL
As raízes são determinadas pela fórmula resolutiva (Bháskara)
![x= \frac{-b+/- \sqrt{x} }{y} \\ \\ = \frac{ -\frac{1}{3}+/- \frac{ \sqrt{19} }{9} }{2(- \frac{3}{2}) } \\ \\ = \frac{ \frac{-1+/- \sqrt{1} }{3} }{-3} \\ \\ = \frac{-1+/- \sqrt{19} }{-9} \\ \\ = \frac{1-/+ \sqrt{19} }{9} \\ \\ x1= \frac{1- \sqrt{19} }{9} \\ x2= \frac{1+ \sqrt{19} }{9} x= \frac{-b+/- \sqrt{x} }{y} \\ \\ = \frac{ -\frac{1}{3}+/- \frac{ \sqrt{19} }{9} }{2(- \frac{3}{2}) } \\ \\ = \frac{ \frac{-1+/- \sqrt{1} }{3} }{-3} \\ \\ = \frac{-1+/- \sqrt{19} }{-9} \\ \\ = \frac{1-/+ \sqrt{19} }{9} \\ \\ x1= \frac{1- \sqrt{19} }{9} \\ x2= \frac{1+ \sqrt{19} }{9}](https://tex.z-dn.net/?f=x%3D+%5Cfrac%7B-b%2B%2F-+%5Csqrt%7Bx%7D+%7D%7By%7D++%5C%5C++%5C%5C+%3D+%5Cfrac%7B+-%5Cfrac%7B1%7D%7B3%7D%2B%2F-+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B9%7D++%7D%7B2%28-+%5Cfrac%7B3%7D%7B2%7D%29+%7D++%5C%5C++%5C%5C+%3D+%5Cfrac%7B+%5Cfrac%7B-1%2B%2F-+%5Csqrt%7B1%7D+%7D%7B3%7D+%7D%7B-3%7D++%5C%5C++%5C%5C+%3D+%5Cfrac%7B-1%2B%2F-+%5Csqrt%7B19%7D+%7D%7B-9%7D++%5C%5C++%5C%5C+%3D+%5Cfrac%7B1-%2F%2B+%5Csqrt%7B19%7D+%7D%7B9%7D++%5C%5C++%5C%5C+x1%3D+%5Cfrac%7B1-+%5Csqrt%7B19%7D+%7D%7B9%7D++%5C%5C+x2%3D+%5Cfrac%7B1%2B+%5Csqrt%7B19%7D+%7D%7B9%7D+)
S = {
}
Nada difícil. Só substituir os valores e efetuar operações indicadas
Veja
As raízes são determinadas pela fórmula resolutiva (Bháskara)
S = {
Respondido por
1
Vamos lá !
![delta = b^{2} -4.a.c\\\\\\delta =( \frac{1}{3})^{2} -4.(- \frac{3}{2} ).( \frac{1}{3} )\\\\\\delta= \frac{1}{9} -4.( -\frac{3}{6} )\\\\\\delta= \frac{1}{9} + \frac{12}{6} \\\\\\delta= \frac{19}{9} delta = b^{2} -4.a.c\\\\\\delta =( \frac{1}{3})^{2} -4.(- \frac{3}{2} ).( \frac{1}{3} )\\\\\\delta= \frac{1}{9} -4.( -\frac{3}{6} )\\\\\\delta= \frac{1}{9} + \frac{12}{6} \\\\\\delta= \frac{19}{9}](https://tex.z-dn.net/?f=delta+%3D+b%5E%7B2%7D+-4.a.c%5C%5C%5C%5C%5C%5Cdelta+%3D%28+%5Cfrac%7B1%7D%7B3%7D%29%5E%7B2%7D+-4.%28-+%5Cfrac%7B3%7D%7B2%7D+%29.%28+%5Cfrac%7B1%7D%7B3%7D+%29%5C%5C%5C%5C%5C%5Cdelta%3D+%5Cfrac%7B1%7D%7B9%7D+-4.%28+-%5Cfrac%7B3%7D%7B6%7D+%29%5C%5C%5C%5C%5C%5Cdelta%3D+%5Cfrac%7B1%7D%7B9%7D+%2B+%5Cfrac%7B12%7D%7B6%7D+%5C%5C%5C%5C%5C%5Cdelta%3D+%5Cfrac%7B19%7D%7B9%7D)
==========================================================
Encontrei delta , agora quero as raízes :
![x= \frac{-b+- \sqrt{delta} }{2a} \\\\\\x= \frac{- \frac{1}{3}+- \sqrt{ \frac{19}{9} } }{2. -\frac{3}{2} } \\\\\\x= \frac{ -\frac{1}{3} +- \frac{ \sqrt{19} }{3} }{ -\frac{6}{2} } \\\\\\x= \frac{- \frac{1}{3}+- \frac{ \sqrt{19} }{3} }{- 3} \\\\\\x'= ( -\frac{1}{3} + \frac{ \sqrt{19} }{3} }).{- \frac{1}{3} } \\\\\\x'= \frac{1}{9} }{- \frac{ \sqrt{19} }{9} } \\\\\\\boxed{x'= \frac{1- \sqrt{19}}{9} } x= \frac{-b+- \sqrt{delta} }{2a} \\\\\\x= \frac{- \frac{1}{3}+- \sqrt{ \frac{19}{9} } }{2. -\frac{3}{2} } \\\\\\x= \frac{ -\frac{1}{3} +- \frac{ \sqrt{19} }{3} }{ -\frac{6}{2} } \\\\\\x= \frac{- \frac{1}{3}+- \frac{ \sqrt{19} }{3} }{- 3} \\\\\\x'= ( -\frac{1}{3} + \frac{ \sqrt{19} }{3} }).{- \frac{1}{3} } \\\\\\x'= \frac{1}{9} }{- \frac{ \sqrt{19} }{9} } \\\\\\\boxed{x'= \frac{1- \sqrt{19}}{9} }](https://tex.z-dn.net/?f=x%3D+%5Cfrac%7B-b%2B-+%5Csqrt%7Bdelta%7D+%7D%7B2a%7D+%5C%5C%5C%5C%5C%5Cx%3D+%5Cfrac%7B-+%5Cfrac%7B1%7D%7B3%7D%2B-+%5Csqrt%7B+%5Cfrac%7B19%7D%7B9%7D+%7D+%7D%7B2.+-%5Cfrac%7B3%7D%7B2%7D+%7D+%5C%5C%5C%5C%5C%5Cx%3D+%5Cfrac%7B+-%5Cfrac%7B1%7D%7B3%7D+%2B-+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B3%7D+%7D%7B+-%5Cfrac%7B6%7D%7B2%7D+%7D+%5C%5C%5C%5C%5C%5Cx%3D+%5Cfrac%7B-+%5Cfrac%7B1%7D%7B3%7D%2B-+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B3%7D+%7D%7B-+3%7D+%5C%5C%5C%5C%5C%5Cx%27%3D+%28+-%5Cfrac%7B1%7D%7B3%7D+%2B+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B3%7D+%7D%29.%7B-+%5Cfrac%7B1%7D%7B3%7D+%7D+%5C%5C%5C%5C%5C%5Cx%27%3D++%5Cfrac%7B1%7D%7B9%7D+%7D%7B-+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B9%7D+%7D+%5C%5C%5C%5C%5C%5C%5Cboxed%7Bx%27%3D+%5Cfrac%7B1-+%5Csqrt%7B19%7D%7D%7B9%7D++%7D)
![x''= \frac{- \frac{1}{3}- \frac{ \sqrt{19} }{3} }{- \frac{3}{1} } \\\\\\x''= ( -\frac{1}{3} - \frac{ \sqrt{19} }{3} }).{ -\frac{1}{3} } \\\\\\x''= \frac{1}{9} +\frac{ \sqrt{19} }{9} \\\\\\\boxed{x''= \frac{1+ \sqrt{19} }{9} } x''= \frac{- \frac{1}{3}- \frac{ \sqrt{19} }{3} }{- \frac{3}{1} } \\\\\\x''= ( -\frac{1}{3} - \frac{ \sqrt{19} }{3} }).{ -\frac{1}{3} } \\\\\\x''= \frac{1}{9} +\frac{ \sqrt{19} }{9} \\\\\\\boxed{x''= \frac{1+ \sqrt{19} }{9} }](https://tex.z-dn.net/?f=x%27%27%3D+%5Cfrac%7B-+%5Cfrac%7B1%7D%7B3%7D-+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B3%7D+%7D%7B-+%5Cfrac%7B3%7D%7B1%7D+%7D+%5C%5C%5C%5C%5C%5Cx%27%27%3D+%28+-%5Cfrac%7B1%7D%7B3%7D+-+%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B3%7D+%7D%29.%7B+-%5Cfrac%7B1%7D%7B3%7D+%7D+%5C%5C%5C%5C%5C%5Cx%27%27%3D+%5Cfrac%7B1%7D%7B9%7D++%2B%5Cfrac%7B+%5Csqrt%7B19%7D+%7D%7B9%7D+%5C%5C%5C%5C%5C%5C%5Cboxed%7Bx%27%27%3D+%5Cfrac%7B1%2B+%5Csqrt%7B19%7D+%7D%7B9%7D+%7D)
===================================================
Então temos como solução :
![\boxed{\boxed{S= \{\ \frac{1- \sqrt {19}}{9} \ ,\ \frac{1+ \sqrt{19 }}{9} \ \ \}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok \boxed{\boxed{S= \{\ \frac{1- \sqrt {19}}{9} \ ,\ \frac{1+ \sqrt{19 }}{9} \ \ \}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BS%3D+%5C%7B%5C+%5Cfrac%7B1-+%5Csqrt++%7B19%7D%7D%7B9%7D++%5C+%2C%5C+%5Cfrac%7B1%2B+%5Csqrt%7B19+%7D%7D%7B9%7D+%5C+%5C+%5C%7D%7D%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+ok)
==========================================================
Encontrei delta , agora quero as raízes :
===================================================
Então temos como solução :
Perguntas interessantes
Física,
11 meses atrás
Inglês,
11 meses atrás
Matemática,
11 meses atrás
História,
1 ano atrás
Geografia,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás