Matemática, perguntado por vitoriagabriellen17, 6 meses atrás

9. Seja
z =  -  \sqrt{2 + i \sqrt[]{2} }
determine:

z⁶

Soluções para a tarefa

Respondido por VitiableIndonesia
2

Resposta: \color{green} \boxed{{ 4 - 10 \sqrt{2} \: i  }}

 { -  \sqrt{2 + i \sqrt{2} } }^{ \: 6}  \\  { - \sqrt[2 \div 2]{2 + i  \sqrt{2}  } }^{ \: 6 \div 2}  \\  - \lgroup2 + i \sqrt{2}  \rgroup {}^{3}  \\  - \lgroup2 +  \sqrt{2}  \: i\rgroup {}^{3}  \\  -\lgroup {2}^{3}  + 3 \times  {2}^{2}  \sqrt{2}  \: i + 3 \times 2 \times \lgroup \sqrt{2} \: i \rgroup {}^{2}  +  {\lgroup \sqrt{2} \: i \rgroup}^{3} \rgroup \\  - \lgroup8 + 3 \times 4 \sqrt{2}  \: i + 3 \times 2 \times  {2i}^{2}  + 2 \sqrt{2}  \:  {i}^{3}\rgroup  \\  - \lgroup8 + 12 \sqrt{2}  \: i + 12 {i}^{2}  + 2 \sqrt{2}  \:  {i}^{3} \rgroup \\  - \lgroup8 + 12 \sqrt{2}  \: i + 12 \times ( - 1) + 2 \sqrt{2}  \times  ( - 1)\rgroup \\  - \lgroup8 + 12 \sqrt{2}  \: i - 12  - 2 \sqrt{2}  \: i\rgroup  \\  - \lgroup - 4 + 12 \sqrt{2}  \: i - 2 \sqrt{2}  \: i\rgroup \\  - \lgroup - 4 + 10 \sqrt{2} \: i \rgroup \\ \color{green} \boxed{{ 4  -  10 \sqrt{2}  \: i }}

{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}}

Perguntas interessantes