8. Um professor de educação física precisou escolher, dentre seus alunos, uma equipe formada por dois meninos e uma menina ou por duas meninas e um menino. Ele observou que poderia fazer essa escolha de 25 maneiras diferentes. Quantos meninos e meninas são alunos desse professor? (A) 5 (B) 7 (C) 9 (D) 10 (E) 25
Soluções para a tarefa
Resposta:
letra C. 9 alunos
Explicação passo a passo:
Utilizando a fórmula de combinação simples e resolvendo a equação encontrada, temos que, o professor possui 7 alunos, alternativa B.
Combinação Simples
Para escolher um grupo de n pessoas entre m indivíduos utilizamos a fórmula de combinação simples, pois a ordem de escolha não influência no grupo formado.
Denotando por x a quantidade de meninos e por y a quantidade de meninas, temos que, para formar um grupo com 2 meninos e 1 menina, temos:
A quantidade de formas de se escolher um grupo com 2 meninas e 1 menino é:
A quantidade de formas do professor formar o grupo de uma dessas formas descritas é:
Igualando essa expressão a 25 e considerando que os valores de x e y devem ser números naturais, pois representam a quantidade de crianças, temos que:
Temos as seguintes soluções possíveis:
- x = 2 e y = 5.
- x = 5 e y = 2.
Dessa forma, concluímos que x + y = 7 alunos.
Para mais informações sobre combinação simples, acesse: https://brainly.com.br/tarefa/7612750
#SPJ2