Matemática, perguntado por LucasJairo, 1 ano atrás

7) Calcule a seguinte integral definida:

 \int\limits^ \frac{ \pi }{2} _\frac{ \pi }{6} { (sen2x-cosx)} \, dx

Soluções para a tarefa

Respondido por kpqvz2
0
Seja u = 2x.
Então, \dfrac{du}{dx}=2 \implies dx = \dfrac{du}{2}

\int(sen \ 2x - cos \ x)dx \\ \\
= \int(sen \ 2x)dx - \int (cos \ x)dx \\ \\
= \int(sen \ u)\dfrac{du}{2} - \int (cos \ x)dx \\ \\
= \dfrac{1}{2}\int(sen \ u)du - \int (cos \ x)dx \\ \\
= \dfrac{1}{2}cos \ u - sen \ x \\ \\
= -\dfrac{1}{2}cos \ 2x - sen \ x + C

Substituindo x por pi/6 e pi/2 na integral indefinida:
-\dfrac{1}{2} \ cos\left( 2 \cdot \dfrac{\pi}{6} \right) - sen \ \dfrac{\pi}{6} \\ \\ = -\dfrac{3}{4}
-------------------------

-\dfrac{1}{2} \ cos\left( 2 \cdot \dfrac{\pi}{2} \right) - sen \ \dfrac{\pi}{2} \\ \\ = -\dfrac{1}{2}

Subtraindo o primeiro resultado do segundo:

-\dfrac{1}{2}+\dfrac{3}{4}=\boxed{\dfrac{1}{4}}
Respondido por CyberKirito
0

\displaystyle\mathsf{\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}(sen(2x)-cos(x))dx}=\\\mathsf{\left[-\dfrac{1}{2}cos(2x)-sen(x)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}}

\mathsf{-\dfrac{1}{2}cos(2.\frac{\pi}{2})-sen(\dfrac{\pi}{2})} \\ \mathsf {-\left[-\dfrac{1}{2}cos(2\dfrac{\pi}{6})-sen(\dfrac{\pi}{6})\right]}

\mathsf{\dfrac{1}{2}-1+\dfrac{1}{4}+\dfrac{1}{2}} =  \\ \huge\boxed{\boxed{\mathsf{ \dfrac{1}{4} }}}

Perguntas interessantes