64) Calcule o valor de: log₃ 1 + log₄ 4 - log₅ 5⁻⁶
Soluções para a tarefa
Respondido por
0
log₃ 1 = 0
log₄ 4 = 1
log₅ 5⁻⁶ = -6x1= -6
log₃ 1 + log₄ 4 - log₅ 5⁻⁶
0 + 1 - (- 6)
= 7
log₄ 4 = 1
log₅ 5⁻⁶ = -6x1= -6
log₃ 1 + log₄ 4 - log₅ 5⁻⁶
0 + 1 - (- 6)
= 7
Respondido por
1
Propriedades de log :
![\boxed{\ log_a\ b=\ x\ \ \ \ \ -\ \textgreater \ a^{x}=b\ } \boxed{\ log_a\ b=\ x\ \ \ \ \ -\ \textgreater \ a^{x}=b\ }](https://tex.z-dn.net/?f=%5Cboxed%7B%5C+log_a%5C+b%3D%5C+x%5C+%5C+%5C+%5C+%5C+-%5C+%5Ctextgreater+%5C+a%5E%7Bx%7D%3Db%5C+%7D+)
Resolvendo ...
![log_3\ 1=x\\\\log_4\ 4=y\\\\log_5\ 5^{-6}=z\\\\\\assim:\\\\log_3\ 1\ +\ log_4\ 4\ -\ log_5\ 5^{-6}\ =\ \boxed{x+y-z} log_3\ 1=x\\\\log_4\ 4=y\\\\log_5\ 5^{-6}=z\\\\\\assim:\\\\log_3\ 1\ +\ log_4\ 4\ -\ log_5\ 5^{-6}\ =\ \boxed{x+y-z}](https://tex.z-dn.net/?f=log_3%5C+1%3Dx%5C%5C%5C%5Clog_4%5C+4%3Dy%5C%5C%5C%5Clog_5%5C+5%5E%7B-6%7D%3Dz%5C%5C%5C%5C%5C%5Cassim%3A%5C%5C%5C%5Clog_3%5C+1%5C+%2B%5C+log_4%5C+4%5C+-%5C+log_5%5C+5%5E%7B-6%7D%5C+%3D%5C+%5Cboxed%7Bx%2By-z%7D)
Encontrando a valor de cada um ...
![log_3\ 1=x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ log_4\ 4=y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ log_5\ 5^{-6}=z\\\\ \ 3^{x}=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4^{y}=4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5^{z}=5^{-6}\\\\3^{x}=3^{0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4^{y}=4^{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5^{z}=5^{-6}\\\\\boxed{x=0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{y=1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{z=-6} log_3\ 1=x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ log_4\ 4=y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ log_5\ 5^{-6}=z\\\\ \ 3^{x}=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4^{y}=4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5^{z}=5^{-6}\\\\3^{x}=3^{0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4^{y}=4^{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5^{z}=5^{-6}\\\\\boxed{x=0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{y=1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{z=-6}](https://tex.z-dn.net/?f=log_3%5C+1%3Dx%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+log_4%5C+4%3Dy%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+log_5%5C+5%5E%7B-6%7D%3Dz%5C%5C%5C%5C+%5C+3%5E%7Bx%7D%3D1%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+4%5E%7By%7D%3D4%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+5%5E%7Bz%7D%3D5%5E%7B-6%7D%5C%5C%5C%5C3%5E%7Bx%7D%3D3%5E%7B0%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+4%5E%7By%7D%3D4%5E%7B1%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+5%5E%7Bz%7D%3D5%5E%7B-6%7D%5C%5C%5C%5C%5Cboxed%7Bx%3D0%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5Cboxed%7By%3D1%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5Cboxed%7Bz%3D-6%7D)
voltando a equação ...
![x+y-z\\\\\\0+1-(-6)\\\\1+6=\boxed{7}\\\\\\Assim\ :\\\\\\\boxed{\boxed{\boxed{log_3\ 1\ +\ log_4\ 4\ -\ log_5\ 5^{-6}\ =\ 7\ \ }}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok x+y-z\\\\\\0+1-(-6)\\\\1+6=\boxed{7}\\\\\\Assim\ :\\\\\\\boxed{\boxed{\boxed{log_3\ 1\ +\ log_4\ 4\ -\ log_5\ 5^{-6}\ =\ 7\ \ }}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok](https://tex.z-dn.net/?f=x%2By-z%5C%5C%5C%5C%5C%5C0%2B1-%28-6%29%5C%5C%5C%5C1%2B6%3D%5Cboxed%7B7%7D%5C%5C%5C%5C%5C%5CAssim%5C+%3A%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cboxed%7Blog_3%5C+1%5C+%2B%5C+log_4%5C+4%5C+-%5C+log_5%5C+5%5E%7B-6%7D%5C+%3D%5C+7%5C+%5C+%7D%7D%7D%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C+%5C++%5C+%5C+%5C+ok)
Resolvendo ...
Encontrando a valor de cada um ...
voltando a equação ...
Perguntas interessantes
Ed. Física,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás