600g de água a 10°C foram misturados em um recipiente adiabático com 800g de água a 80°C. Calcule a temperatura de equilíbrio térmico.
Adote: Cágua = 1cal/g°C.
Pelo amor de deus, alguem me ajude a entender essa coisa. Obrigada desde já.
Soluções para a tarefa
Respondido por
0
Olá Vic, boa noite!
Exercícios como este onde ocorre trocas de calor em um sistema adiabático (Um recipiente adiabático é aquele que impede trocas de calor entre seu interior e o ambiente externo) você deve somar as quantidades de calor trocadas (liberadas ou absorvidas) e igualar a ZERO. Sendo assim:
Lembrando que a equação fundamental da calorimetria é: Q = m·c·(θ - θ₀), onde:
m₁ = 600 g θ₀₁ (temperatura inicial) = 10 °C
m₂ = 800 g θ₀₂ (temperatura inicial) = 80 °C
c₁ = c₂ (calor específico) = 1 cal/g·°C θ (temperatura final) = x
Aplicando na equação:
Q₁ + Q₂ = 0 ⇒
m₁·c₁·(θ - θ₀₁) + m₂·c₂·(θ - θ₀₂ ) = 0 ⇒
600·1·(x - 10) + 800·1·(x - 80) = 0 ⇒
600·x - 6000 + 800·x - 64000 = 0 ⇒
1400·x = 70000
x = 70000/1400
x = 50 °C
∴ Após o equilíbrio a água terá 50 °C
Abraços!!
Exercícios como este onde ocorre trocas de calor em um sistema adiabático (Um recipiente adiabático é aquele que impede trocas de calor entre seu interior e o ambiente externo) você deve somar as quantidades de calor trocadas (liberadas ou absorvidas) e igualar a ZERO. Sendo assim:
Lembrando que a equação fundamental da calorimetria é: Q = m·c·(θ - θ₀), onde:
m₁ = 600 g θ₀₁ (temperatura inicial) = 10 °C
m₂ = 800 g θ₀₂ (temperatura inicial) = 80 °C
c₁ = c₂ (calor específico) = 1 cal/g·°C θ (temperatura final) = x
Aplicando na equação:
Q₁ + Q₂ = 0 ⇒
m₁·c₁·(θ - θ₀₁) + m₂·c₂·(θ - θ₀₂ ) = 0 ⇒
600·1·(x - 10) + 800·1·(x - 80) = 0 ⇒
600·x - 6000 + 800·x - 64000 = 0 ⇒
1400·x = 70000
x = 70000/1400
x = 50 °C
∴ Após o equilíbrio a água terá 50 °C
Abraços!!
VicXV:
Mto obg pela ajuda!
Perguntas interessantes