52 PONTOS. Preciso da responda com todo o cálculo o mais rápido possível.
1° Resolva em R as equações modulares:
A) |2x - 3| = 1
B) |4x - 1| - |2x + 3| = 0
2° Determine o conjunto solução, em R, da inequação (x² - 5x) (x² - 8x + 12) < 0.
Lukyo:
A questão 1 está resolvida na seguinte tarefa:
Soluções para a tarefa
Respondido por
2
Questão 2.
Resolver em
a inequação-produto:
![(x^{2}-5x)(x^{2}-8x+12)<0\\ \\ \\ f(x)\cdot g(x)<0~~~~~~\mathbf{(i)} (x^{2}-5x)(x^{2}-8x+12)<0\\ \\ \\ f(x)\cdot g(x)<0~~~~~~\mathbf{(i)}](https://tex.z-dn.net/?f=%28x%5E%7B2%7D-5x%29%28x%5E%7B2%7D-8x%2B12%29%26lt%3B0%5C%5C+%5C%5C+%5C%5C+f%28x%29%5Ccdot+g%28x%29%26lt%3B0%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28i%29%7D)
sendo
![f(x)=x^{2}-5x~~~\text{ e }~~~g(x)=x^{2}-8x+12. f(x)=x^{2}-5x~~~\text{ e }~~~g(x)=x^{2}-8x+12.](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B2%7D-5x%7E%7E%7E%5Ctext%7B+e+%7D%7E%7E%7Eg%28x%29%3Dx%5E%7B2%7D-8x%2B12.)
____________________________
Vamos estudar o sinal de cada função separadamente:
Estudando o sinal de ![f(x): f(x):](https://tex.z-dn.net/?f=f%28x%29%3A)
![f(x)=x^{2}-5x\\ \\ =x(x-5) f(x)=x^{2}-5x\\ \\ =x(x-5)](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B2%7D-5x%5C%5C+%5C%5C+%3Dx%28x-5%29)
As raízes de
são
![x(x-5)=0\\ \\ x_{1}=0~~\text{ e }~~x_{2}=5. x(x-5)=0\\ \\ x_{1}=0~~\text{ e }~~x_{2}=5.](https://tex.z-dn.net/?f=x%28x-5%29%3D0%5C%5C+%5C%5C+x_%7B1%7D%3D0%7E%7E%5Ctext%7B+e+%7D%7E%7Ex_%7B2%7D%3D5.)
Sendo assim, o sinal de
é
![f(x)~~~~\underline{++++~}\underset{0}{\circ}\underline{~------~}\underset{5}{\circ}\underline{~++++~} f(x)~~~~\underline{++++~}\underset{0}{\circ}\underline{~------~}\underset{5}{\circ}\underline{~++++~}](https://tex.z-dn.net/?f=f%28x%29%7E%7E%7E%7E%5Cunderline%7B%2B%2B%2B%2B%7E%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Cunderline%7B%7E------%7E%7D%5Cunderset%7B5%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%2B%7E%7D)
Estudando o sinal de ![g(x): g(x):](https://tex.z-dn.net/?f=g%28x%29%3A)
![g(x)=x^{2}-8x+12\\ \\ =x^{2}-2x-6x+12\\ \\ =x(x-2)-6(x-2)\\ \\ =(x-2)(x-6) g(x)=x^{2}-8x+12\\ \\ =x^{2}-2x-6x+12\\ \\ =x(x-2)-6(x-2)\\ \\ =(x-2)(x-6)](https://tex.z-dn.net/?f=g%28x%29%3Dx%5E%7B2%7D-8x%2B12%5C%5C+%5C%5C+%3Dx%5E%7B2%7D-2x-6x%2B12%5C%5C+%5C%5C+%3Dx%28x-2%29-6%28x-2%29%5C%5C+%5C%5C+%3D%28x-2%29%28x-6%29)
As raízes de
são
![(x-2)(x-6)=0\\ \\ x_{3}=2~~\text{ e }~~x_{4}=6. (x-2)(x-6)=0\\ \\ x_{3}=2~~\text{ e }~~x_{4}=6.](https://tex.z-dn.net/?f=%28x-2%29%28x-6%29%3D0%5C%5C+%5C%5C+x_%7B3%7D%3D2%7E%7E%5Ctext%7B+e+%7D%7E%7Ex_%7B4%7D%3D6.)
Então, o sinal de
é
![g(x)~~~~\underline{++++~}\underset{2}{\circ}\underline{~------~}\underset{6}{\circ}\underline{~++++~} g(x)~~~~\underline{++++~}\underset{2}{\circ}\underline{~------~}\underset{6}{\circ}\underline{~++++~}](https://tex.z-dn.net/?f=g%28x%29%7E%7E%7E%7E%5Cunderline%7B%2B%2B%2B%2B%7E%7D%5Cunderset%7B2%7D%7B%5Ccirc%7D%5Cunderline%7B%7E------%7E%7D%5Cunderset%7B6%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%2B%7E%7D)
____________________________
Resumindo:
![\begin{array}{cl} f(x)&\underline{~+++~}\underset{0}{\circ}\underline{~---~}\underset{2}{\circ}\underline{~----~}\underset{5}{\circ}\underline{~++~}\underset{6}{\circ}\underline{~+++~}\\ \\ g(x)&\underline{~+++~}\underset{0}{\circ}\underline{~+++~}\underset{2}{\circ}\underline{~----~}\underset{5}{\circ}\underline{~--~}\underset{6}{\circ}\underline{~+++~}\\ \\ \\ f(x)\cdot g(x)&\underline{~+++~}\underset{0}{\circ}\underline{~---~}\underset{2}{\circ}\underline{~++++~}\underset{5}{\circ}\underline{~--~}\underset{6}{\circ}\underline{~+++~}\\ \\ \end{array} \begin{array}{cl} f(x)&\underline{~+++~}\underset{0}{\circ}\underline{~---~}\underset{2}{\circ}\underline{~----~}\underset{5}{\circ}\underline{~++~}\underset{6}{\circ}\underline{~+++~}\\ \\ g(x)&\underline{~+++~}\underset{0}{\circ}\underline{~+++~}\underset{2}{\circ}\underline{~----~}\underset{5}{\circ}\underline{~--~}\underset{6}{\circ}\underline{~+++~}\\ \\ \\ f(x)\cdot g(x)&\underline{~+++~}\underset{0}{\circ}\underline{~---~}\underset{2}{\circ}\underline{~++++~}\underset{5}{\circ}\underline{~--~}\underset{6}{\circ}\underline{~+++~}\\ \\ \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcl%7D+f%28x%29%26amp%3B%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Cunderline%7B%7E---%7E%7D%5Cunderset%7B2%7D%7B%5Ccirc%7D%5Cunderline%7B%7E----%7E%7D%5Cunderset%7B5%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%7E%7D%5Cunderset%7B6%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5C%5C+%5C%5C+g%28x%29%26amp%3B%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5Cunderset%7B2%7D%7B%5Ccirc%7D%5Cunderline%7B%7E----%7E%7D%5Cunderset%7B5%7D%7B%5Ccirc%7D%5Cunderline%7B%7E--%7E%7D%5Cunderset%7B6%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5C%5C+%5C%5C+%5C%5C+f%28x%29%5Ccdot+g%28x%29%26amp%3B%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Cunderline%7B%7E---%7E%7D%5Cunderset%7B2%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%2B%7E%7D%5Cunderset%7B5%7D%7B%5Ccirc%7D%5Cunderline%7B%7E--%7E%7D%5Cunderset%7B6%7D%7B%5Ccirc%7D%5Cunderline%7B%7E%2B%2B%2B%7E%7D%5C%5C+%5C%5C+%5Cend%7Barray%7D)
Analisando o sinal de
vemos que
![f(x)\cdot g(x)<0 f(x)\cdot g(x)<0](https://tex.z-dn.net/?f=f%28x%29%5Ccdot+g%28x%29%26lt%3B0)
quando![0<x<2~~\text{ ou }~~5<x<6. 0<x<2~~\text{ ou }~~5<x<6.](https://tex.z-dn.net/?f=0%26lt%3Bx%26lt%3B2%7E%7E%5Ctext%7B+ou+%7D%7E%7E5%26lt%3Bx%26lt%3B6.)
Portanto, o conjunto solução para a inequação dada é
![S=\left\{x \in \mathbb{R}\left|\;0<x<2~~\text{ ou }~~5<x<6\right. \right \} S=\left\{x \in \mathbb{R}\left|\;0<x<2~~\text{ ou }~~5<x<6\right. \right \}](https://tex.z-dn.net/?f=S%3D%5Cleft%5C%7Bx+%5Cin+%5Cmathbb%7BR%7D%5Cleft%7C%5C%3B0%26lt%3Bx%26lt%3B2%7E%7E%5Ctext%7B+ou+%7D%7E%7E5%26lt%3Bx%26lt%3B6%5Cright.+%5Cright+%5C%7D)
ou usando a notação de intervalos,
![S=(0,\;2)\cup (5,\;6). S=(0,\;2)\cup (5,\;6).](https://tex.z-dn.net/?f=S%3D%280%2C%5C%3B2%29%5Ccup+%285%2C%5C%3B6%29.)
Resolver em
sendo
____________________________
Vamos estudar o sinal de cada função separadamente:
As raízes de
Sendo assim, o sinal de
As raízes de
Então, o sinal de
____________________________
Resumindo:
Analisando o sinal de
quando
ou usando a notação de intervalos,
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Inglês,
1 ano atrás
Português,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás